精英家教网 > 初中数学 > 题目详情
17.求下列不等式组的解集,并在数轴上表示出来:
(1)$\left\{\begin{array}{l}{3x+6≤15}\\{-2x+4≤6}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{x-2(x-2)<-1}\\{2(x+2)-(1+x)≤1}\end{array}\right.$.

分析 (1)分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集;
(2)分别计算出两个不等式的解集,再根据大大小小找不到确定不等式组的解集.

解答 解:(1)$\left\{\begin{array}{l}{3x+6≤15①}\\{-2x+4≤6②}\end{array}\right.$,
由①得:x≤3,
由②得:x≥-1,
不等式组的解集为-1≤x≤3,
在数轴上表示为:


(2)$\left\{\begin{array}{l}{x-2(x-2)<-1①}\\{2(x+2)-(1+x)≤1②}\end{array}\right.$,
由①得:x>5,
由②得:x≤-2,
不等式组的解集为:无解,
在数轴上表示为:

点评 此题主要考查了一元一次不等式组的解法,以及在数轴上表示不等式组的解集,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

7.以下现象:①传送带上,瓶装饮料的移动;②打气筒打气时,活塞的运动;③钟摆的摆动;④在荡秋千的小朋友.其中属于平移的是(  )
A.①②B.①③C.②③D.②④

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.在同一直角坐标系中,画出函数y=-$\frac{1}{2}$x2,y=-$\frac{1}{2}$x2-1,y=-$\frac{1}{2}$(x+1)2-1的图象,并列表比较这三条抛物线的对称轴、顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.在矩形ABCD中,E为线段BC上一点,点B关于AE的对称点为F,连接AF,G为BC延长线上一点,且DG=DA,射线EF交射线GD于点P.
(1)如图1,当点P在线段GD上时,求证:PF=CG+DP;
(2)如图2,当点P在线段GD的延长线上时,直接写出线段PF、CG、DP之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,M,N是正方形ABCD的边BC上两个动点,满足BM=CN,连结AC交DN于点P,连结AM交BP于点Q,若正方形的边长为1,则线段CQ的最小值是$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.问题背景:
如图1,点E、F在直线l的同侧,要在直线l上找一点K,使KE与KF的距离之和最小.我们可以作出点E关于l的对称点E′,连接FE′交直线L于点K,则点K即为所求.

(1)实践运用:
抛物线y=ax2+bx+c经过点A(-1,0)、B(3,0)、C(0,-3).如图2.
①求该抛物线的解析式;
②在抛物线的对称轴上找一点P,使PA+PC的值最小,并求出此时点P的坐标及PA+PC的最小值.
(2)知识拓展:
在对称轴上找一点Q,使|QA-QC|的值最大,并求出此时点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,四边形ABCD内接于⊙O,对角线AC经过圆心O.且交BD于点E,BO⊥AD于点H,OA=AD=2,则OE:EC值是(  )
A.1:2B.1:$\sqrt{2}$C.1:$\sqrt{3}$D.$\sqrt{2}$:$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.设等边△ABC的内切圆半径为2,圆心为I.若点P满足PI=1,则△ABC与△APC的面积之比的最大值为6.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图所示是一天中不同时刻直立的灯杆在阳光下形成的影长,规定各图向右为正东方向,将各图按时间顺序排列正确的是(  )
A.②④①③B.③①④②C.②④③①D.①③②④

查看答案和解析>>

同步练习册答案