精英家教网 > 初中数学 > 题目详情

【题目】如图,等边ABC内接于⊙OP上任意一点(不与点AB重合),连APBP,过点CCM//BPPA的延长线于点M.

1)求∠APC和∠BPC的度数

2)探究PAPBPM之间的关系

3)若PA=1PB=2,求四边形PBCM的面积.

【答案】1)∠APC=60°;∠BPC=60°;(2PM= PAPB;(3

【解析】

1)根据等边三角形的性质和同弧所对的圆周角相等即可得出结论;

2)根据平行线的性质可得∠MCP=BPC=60°,然后根据等边三角形的判定可得△CPM为等边三角形,再利用SAS证出△BCP≌△ACM,即可得出PB=AM,从而得出结论;

3)过点CCDMPD,根据(2)的结论和等边三角形的性质求出AMCD,利用三角形的面积公式即可求出SCAMSCAP,然后根据全等三角形的性质可得SBCP= SACM,最后根据S四边形PBCM = SCAMSCAPSBCP即可得出结论.

解:(1)∵△ABC为等边三角形

∴∠BAC=ABC=ACB=60°,AB=AC=BC

∴∠APC=ABC=60°,∠BPC=BAC=60°;

2PM= PAPB,理由如下

CMBP

∴∠MCP=BPC=60°

∴∠M=180°-∠MPC-∠MCP=60°

∴△CPM为等边三角形

CP=CM,∠PCM=60°

∵∠ACB=60°

∴∠ACB=PCM

∴∠BCP=ACM

在△BCP和△ACM

∴△BCP≌△ACM

PB=AM

PM=PAAM=PAPB

3)过点CCDMPD

PA=1PB=2

PM=PAPB=3AM=PB=2

∵△CPM为等边三角形

CM=CP=PM=3

CDMP

MD==

根据勾股定理可得CD=

SCAM=

SCAP=

∵△BCP≌△ACM

SBCP= SACM

S四边形PBCM = SCAMSCAPSBCP

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2+2x+ca0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点COBOC3

1)求该抛物线的函数解析式;

2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接ODCDODBC于点F,当SCOFSCDF32时,求点D的坐标.

3)如图2,点E的坐标为(0),在抛物线上是否存在点P,使∠OBP2OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线CD交⊙O于点D,过点D作⊙O的切线PDCA的延长线于点P,过点AAECD于点E,过点BBFCD于点F

1)求证:DPAB

2)试猜想线段AEEFBF之间的数量关系,并加以证明;

3)若AC6BC8,求线段PD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,∠ABC=90°,∠BAC30°,将ABC绕点A顺时针旋转一定的角度得到AED,点BC的对应点分别是ED.

(1)如图1,当点E恰好在AC上时,求∠CDE的度数;

(2)如图2,若=60°时,点F是边AC中点,求证:四边形BFDE是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学习了统计知识后,小明的数学老师要求每个学生就本班同学的上学方式进行一次调查统计,如图是小明通过收集数据后绘制的两幅不完整的统计图. 请根据图中提供的信息,解答下列问题:

(1)该班共有_______________名学生;

(2)骑自行车部分的条形统计图补充完整;

(3)在扇形统计图中;求出乘车部分所对应的圆心角的度数;

(4)若全年级有600名学生,试估计该年级骑自行车上学的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,以AB为直径的圆交AC于点D,EBC的中点,连接DE.

1)求证:DE的切线;

2)设的半径为r,证明

3)若,求AD之长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程有两个实数根x1x2

1)求实数k的取值范围;

2)是否存在实数k使得成立?若存在,请求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,AD=5,点E、F是正方形ABCD内的两点,且AE=FC=3,BE=DF=4,则EF的长为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案