【题目】在Rt△ABC中,∠ABC=90°,∠BAC=30°,将△ABC绕点A顺时针旋转一定的角度得到△AED,点B、C的对应点分别是E、D.
(1)如图1,当点E恰好在AC上时,求∠CDE的度数;
(2)如图2,若=60°时,点F是边AC中点,求证:四边形BFDE是平行四边形.
【答案】(1)15°;(2)证明见解析.
【解析】
(1)如图1,利用旋转的性质得CA=DA,∠CAD=∠BAC=30°,∠DEA=∠ABC=90°,再根据等腰三角形的性质求出∠ADC,从而计算出∠CDE的度数;
(2)如图2,利用直角三角形斜边上的中线性质得到BF=AC,利用含30度的直角三角形三边的关系得到BC=AC,则BF=BC,再根据旋转的性质得到∠BAE=∠CAD=60°,AB=AE,AC=AD ,DE=BC,从而得到DE=BF,△ACD和△BAE为等边三角形,接着由△AFD≌△CBA得到DF=BA,然后根据平行四边形的判定方法得到结论.
解:(1)如图1,∵△ABC绕点A顺时针旋转α得到△AED,点E恰好在AC上,
∴CA=CD,∠CAD=∠BAC=30°,∠DEA=∠ABC=90°,
∵CA=DA,
∴∠ACD=∠ADC=(180°30°)=75°,∠ADE=90°-30°=60°,
∴∠CDE=75°60°=15°;
(2)证明:如图2,
∵点F是边AC中点,
∴BF=AC,
∵∠BAC=30°,
∴BC=AC,
∴BF=BC,
∵△ABC绕点A顺时针旋转60°得到△AED,
∴∠BAE=∠CAD=60°,AB=AE,AC=AD,DE=BC,
∴DE=BF,△ACD和△BAE为等边三角形,
∴BE=AB,
∵点F为△ACD的边AC的中点,
∴DF⊥AC,
易证得△AFD≌△CBA,
∴DF=BA,
∴DF=BE,
而BF=DE,
∴四边形BEDF是平行四边形.
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,弦CD⊥AB于点E,G为⊙O一点,连接OD, 并延长DO交CG于点M,CM=GM.
(1)求证:∠GCD=2∠ADC
(2)过点G作GN⊥CD,交CD于点N,交⊙O于点T,过点O作OK⊥TG,交TG于点K,连接TC,求证:TC=2NK
(3)在(2)的条件下,连接BG,BG=11,CD=30,求sin∠CTN.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,把矩形沿对角线所在的直线折叠,点落在点处,与轴相交于点.矩形的边,的长是关于的一元二次方程的两个根,且.
(1)求线段,的长;
(2)求证:,并求出线段的长;
(3)直接写出点的坐标;
(4)若是直线上一个动点,在坐标平面内是否存在点,使以点,,,为顶点的四边形是菱形?若存在,请直接写出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-2,与x轴的一个交点在(-3,0)和(-4,0)之间,其部分图象如图所示,则下列结论:①3a-c<0;② abc<0; ③点,,是该抛物线上的点,则; ④4a-2b≥at2+bt(t为实数);正确的个数有()个
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=8cm,BC=16cm,点P从点A开始沿边AB向点B以2cm/s的速度移动,点Q从点B开始沿边BC向点C以4cm/s的速度移动,如果点P、Q分别从点A、B同时出发,经几秒钟△PBQ与△ABC相似?试说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解本校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,课题小组随机选取该校部分学生进行了问卷调査(问卷调査表如图所示),并根据调查结果绘制了图1、图2两幅统计图(均不完整),请根据统计图解答下列问题.
(1)本次接受问卷调查的学生有____名.
(2)补全条形统计图.
(3)扇形统计图中B类节目对应扇形的圆心角的度数为_____.
(4)该校共有4000名学生,根据调查结果估计该校最喜爱新闻节目的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ACB=90°,AC=16,BC=4,D为AB上一点,DE⊥AC于点E,DE=1,P为CE上一动点,设CP的长为a.
(1)求CE的长;
(2)a为何值时,△DEP与△BCP相似?
(3)当PD+PB有最小值时,求a的值及最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com