【题目】如图,在平面直角坐标系中,把矩形沿对角线所在的直线折叠,点落在点处,与轴相交于点.矩形的边,的长是关于的一元二次方程的两个根,且.
(1)求线段,的长;
(2)求证:,并求出线段的长;
(3)直接写出点的坐标;
(4)若是直线上一个动点,在坐标平面内是否存在点,使以点,,,为顶点的四边形是菱形?若存在,请直接写出点的坐标;若不存在,请说明理由.
【答案】
【解析】
试题分析:(1)解方程即可得到结论;
(2)由四边形ABCO是矩形,得到AB=OC,∠ABC=∠AOC=90°,根据折叠的性质得到AD=AB,∠ADE=∠ABC=90°,根据全等三角形的判定得到△ADE≌△COE;根据勾股定理得到OE=3;
(3)过D作DM⊥x轴于M,则OE∥DM,根据相似三角形的性质得到CM=,DM=,于是得到结论.
(4)过P1作P1H⊥AO于H,根据菱形的性质得到P1E=CE=5,P1E∥AC,设P1H=k,HE=2k,根据勾股定理得到P1E= k=5,于是得到P1(﹣,2+3),同理P3(,3﹣2),当A与F重合时,得到P2(4,5);当CE是菱形EP4CF4的对角线时,四边形EP4CF4是菱形,得到EP4=5,EP4∥AC,如图2,过P4作P4G⊥x轴于G,过P4作P4N⊥OE于N,根据勾股定理即可得到结论.
试题解析:(1)解方程x2﹣12x+32=0得,x1=8,x2=4,∵OA>OC,∴OA=8,OC=4;
(2)∵四边形ABCO是矩形,∴AB=OC,∠ABC=∠AOC=90°,
∵把矩形OABC沿对角线AC所在直线折叠,点B落在点D处,∴AD=AB,∠ADE=∠ABC=90°,
∴AD=OC,∠ADE=∠COE,在△ADE与△COE中, ,∴△ADE≌△COE;
∵CE2=OE2+OC2,即(8﹣OE)2=OE2+42,∴OE=3;
(3)过D作DM⊥x轴于M,则OE∥DM,
∴△OCE∽△MCD,∴ ,∴CM=,DM=,∴OM= ,
∴D(﹣,);
(4)存在;∵OE=3,OC=4,∴CE=5,过P1作P1H⊥AO于H,∵四边形P1ECF1是菱形,∴P1E=CE=5,P1E∥AC,
∴∠P1EH=∠OAC,∴ = ,∴设P1H=k,HE=2k,∴P1E=k=5,∴P1H=,HE=2,
∴OH=2+3,∴P1(﹣,2+3),同理P3(,3﹣2),
当A与F重合时,四边形F2ECP2是菱形,∴EF2∥CP2,EF2,=CP2=5,∴P2(4,5);
当CE是菱形EP4CF4的对角线时,四边形EP4CF4是菱形,∴EP4=5,EP4∥AC,
如图2,过P4作P4G⊥x轴于G,过P4作P4N⊥OE于N,则P4N=OG,P4G=ON,EP4∥AC,∴=,
设P4N=x,EN=2x,∴P4E=CP4=x,∴P4G=ON=3﹣2x,CG=4﹣x,∴(3﹣2x)2+(4﹣x)2=(x)2,
∴x= ,∴3﹣2x= ,∴P4(,),
综上所述:存在以点E,C,P,F为顶点的四边形是菱形,P(﹣,2+3),(,3﹣2),(4,5),(,).
科目:初中数学 来源: 题型:
【题目】小明从今年1月初起刻苦练习跳远,每个月的跳远成绩都比上一个月有所增加,而且增加的距离相同.2月份,5月份他的跳远成绩分别为4.1m,4.7m.请你算出小明1月份的跳远成绩以及每个月增加的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知等腰三角形其中一个内角为70°,那么这个等腰三角形的顶角度数为( )
A. 70° B. 70°或55° C. 40°或55° D. 70°或40°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为养成学生课外阅读的习惯,各学校普遍开展了“我的梦 中国梦”课外阅读活动.某校为了解七年级1200名学生课外日阅读所用时间情况,从中随机抽查了部分同学,进行了相关统计,整理并绘制出不完整的频数分布表和频数分布直方图.请根据图表信息解答问题:
(1)表中 , ;
(2)请补全频数分布直方图中空缺的部分;
(3)样本中,学生日阅读所用时间的中位数落在第 组;
(4)请估计该校七年级学生日阅读量不足1小时的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据不等式的基本性质,以下各题的结论正确的是( )
A.若a≥b,则5b≤5aB.若b﹣3a>0,则b<3a
C.若﹣5x≥20,则x≥﹣4D.若a≤b,则ac≤bc
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com