精英家教网 > 初中数学 > 题目详情

【题目】某校为了选拔学生参加“汉字听写大赛”,对九年级一班、二班各10名学生进行汉字听写测试.计分采用10分制(得分均取整数),成绩达到6分或6分以上为及格,得到9分为优秀,成绩如表1所示,并制作了成绩分析表(表2). 表1

一班

5

8

8

9

8

10

10

8

5

5

二班

10

6

6

9

10

4

5

7

10

8

表2

班级

平均数

中位数

众数

方差

及格率

优秀率

一班

7.6

8

a

3.82

70%

30%

二班

b

7.5

10

4.94

80%

40%


(1)在表2中,a= , b=
(2)有人说二班的及格率、优秀率均高于一班,所以二班比一班好;但也有人认为一班成绩比二班好,请你给出坚持一班成绩好的两条理由;
(3)一班、二班获满分的中同学性别分别是1男1女、2男1女,现从这两班获满分的同学中各抽1名同学参加“汉字听写大赛”,用树状图或列表法求出恰好抽到1男1女两位同学的概率.

【答案】
(1)8;7.5
(2)解:一班的平均成绩高,且方差小,较稳定,

故一班成绩好于二班


(3)解:列表得:

∵共有6种等可能的结果,一男一女的有3种,

∴P(一男一女)= =


【解析】解:(1)∵数据8出现了4次,最多, ∴众数a=8;
b= =7.5;
【考点精析】根据题目的已知条件,利用列表法与树状图法的相关知识可以得到问题的答案,需要掌握当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算:(﹣ 2+|﹣4|×21﹣( ﹣1)0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,点D、E是边BC上的两个点,且BD=DE=EC,过点C作CF∥AB交AE延长线于点F,连接FD并延长与AB交于点G;
(1)求证:AC=2CF;
(2)连接AD,如果∠ADG=∠B,求证:CD2=ACCF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算题
(1)计算:(x+4)2+(x+3)(x﹣3)
(2)解不等式组 ,并把解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与探究:如图,已知抛物线y=﹣x2+2x+3的图象与x轴交于点A,B(A在B的右侧),与y轴交于点C,对称轴与抛物线交于点D,与x轴交于点E.

(1)求点A,B,C,D的坐标;
(2)求出△ACD的外心坐标;
(3)将△BCE沿x轴的正方向每秒向右平移1个单位,当点E移动到点A时停止运动,若△BCE与△ADE重合部分的面积为S,运动时间为t(s),请直接写出S关于t的函数关系式,并写出自变量的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,动点P从点A出发,沿半圆AB匀速运动到达终点B,若以时间t为自变量,扇形OAP的面积S为函数图象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=4,AC=2,BC=2 ,以BC为直径的半圆交AB于点D,以A为圆心,AC为半径的扇形交AB于点E.
(1)以BC为直径的圆与AC所在的直线有何位置关系?请说明理由;
(2)求图中阴影部分的面积(结果可保留根号和π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.
(1)判断直线BC与⊙O的位置关系,并说明理由;
(2)若AC=3,∠B=30°. ①求⊙O的半径;
②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E,标记好脚掌中心位置为B,测得脚掌中心位置B到镜面中心C的距离是50cm,镜面中心C距离旗杆底部D的距离为4m,如图所示.已知小丽同学的身高是1.54m,眼睛位置A距离小丽头顶的距离是4cm,则旗杆DE的高度等于(
A.10m
B.12m
C.12.4m
D.12.32m

查看答案和解析>>

同步练习册答案