【题目】抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:
①4ac<b2;
②a>b>c;
③一次函数y=ax+c的图象不经第四象限;
④m(am+b)+b<a(m是任意实数);
⑤3b+2c>0.
其中正确的个数是( )
A.1B.2C.3D.4
【答案】A
【解析】
利用抛物线与x轴交点个数可对①进行判断;利用抛物线开口方向得到a>0,利用抛物线的对称轴方程得到b=2a>0,利用抛物线与y轴的交点位置得到c<0,则可对②进行判断;根据一次函数的性质可对③进行判断;根据当x=﹣1时,二次函数有最小值,可对④进行判断;利用抛物线的对称性得到抛物线与x轴的另一个交点坐标,利用ab得到3b+2c=0,则可对⑤进行判断.
∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即4ac<b2,∴①正确;
∵抛物线开口向上,∴a>0.
∵抛物线的对称轴为直线x1,∴b=2a>0.
∵抛物线与y轴的交点在x轴下方,∴c<0,∴b>a>c,∴②错误;
∵a>0,c<0,∴一次函数y=ax+c的图象经过一三四象限,不过第二象限,∴③错误;
∵抛物线的对称轴为直线x=﹣1,∴当x=﹣1时,函数有最小值y=a﹣b+c,∴am2+bm+c≥a﹣b+c,即m(am+b)+b≥a,∴④错误;
∵抛物线与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,∴抛物线与x轴的另一个交点坐标为(﹣3,0),∴9a﹣3b+c=0,∴18a﹣6b+2c=0.
∵b=2a,则ab,∴9b﹣6b+2c=0,即3b+2c=0,∴⑤错误.
故选A.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,点D是AB上的一点,连接CD,CE∥AB,BE∥CD,且CE=AD.
(1)求证:四边形BDCE是菱形;
(2)过点E作EF⊥BD,垂足为点F,若点F是BD的中点,EB=6,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形中,,,,,点从点出发,以每秒的速度沿折线方向运动,点从点出发,以每秒的速度沿线段方向向点运动、已知动点,同时出发,当点运动到点时,点,停止运动,设运动时间为秒,在这个运动过程中,若的面积为,则满足条件的的值有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场将每件进价为80元的A商品按每件100元出售,一天可售出128件.经过市场调查,发现这种商品的销售单价每降低1元,其日销量可增加8件.设该商品每件降价x元,商场一天可通过A商品获利润y元.
(1)求y与x之间的函数解析式(不必写出自变量x的取值范围)
(2)A商品销售单价为多少时,该商场每天通过A商品所获的利润最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P在y轴的正半轴上,⊙P交x轴于B、C两点,以AC为直角边作等腰Rt△ACD,BD分别交y轴和⊙P于E、F两点,连接AC、FC.
(1)求证:∠ACF=∠ADB;
(2)若点A到BD的距离为m,BF+CF=n,求线段CD的长;
(3)当⊙P的大小发生变化而其他条件不变时,的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】泉州市旅游资源丰富,①清源山、②开元寺、③崇武古城三个景区是人们节假日玩的热点景区,张老师对八(1)班学生“五·一”小长假随父母到这三个景区游玩的计划做了全面调查,调查分四个类别:A、游三个景区;B,游两个景区;C,游一个景区:D,不到这三个景区游玩现根据调查结果绘制了不完整的条形统计图和廟形统计图,请结合图中信息解答下列问题:
(1)八(1)班共有学生 人在扇形统计图中,表示“B类别的扇形的圆心角的度数为 ;
(2)请将条形统计图补充完整;
(3)若小华、小刚两名同学,各自从三个最区中随机选一个作为5月1日游玩的景区,请用树状图或列表法求他们选中同个景区的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程.
(1)证明该方程一定有两个不相等的实数根;
(2)设该方程两根为x1、x2(x1<x2).
①当时,试确定y值的范围;
②如图,平面直角坐标系中有三点A、B、C,坐标分别为(x1,0)、(x2,3)、(7,0).以点C为圆心,2个单位长度为半径的圆与直线AB相切,求n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为5,△D′PH的面积为20,则矩形ABCD的面积等于_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com