精英家教网 > 初中数学 > 题目详情

【题目】ABC中,已知AB2,∠B30°AC.则SABC_________.

【答案】

【解析】

ABC是锐角三角形与钝角三角形两种情况进行讨论,然后分别解直角ABD与直角ACD,求出ADBDCD的长,再根据SABC=BCAD,代入数值计算即可.

ABC是锐角三角形时,

过点AADBC于点D

AB=2,∠B=30°

AD=AB=1

∴由勾股定理可知:BD=

AC=

∴由勾股定理可知:CD=

BC=BD+DC=+1

SABC=BCAD=×+1×1=

ABC是钝角三角形时,

同理可得:BD=CD=1

BC=BD-DC=-1

SABC=BCAD=×-1×1=

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△OAB中,∠ABO90°,点A位于第一象限,点O为坐标原点,点Bx轴正半轴上,若双曲线yx0)与△OAB的边AO.AB分别交于点C.D,点CAO的中点,连接OD.CD.若SOBD3,则SOCD_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆的直径,点C是弧AB的中点,点E是弧AC的中点,连结EBCA交于点F,则 的值为(

A.B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+bx+c的对称轴为直线x=1,部分图象如图所示,下列判断中:

①4acb2

abc

③一次函数y=ax+c的图象不经第四象限;

mam+b+bam是任意实数);

⑤3b+2c0

其中正确的个数是(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=﹣2x+4分别交x轴、y轴于点AB,抛物线过AB两点,点P是线段AB上一动点,过点PPCx轴于点C,交抛物线于点D

1)若抛物线的解析式为y=﹣2x2+2x+4,设其顶点为M,其对称轴交AB于点N

求点M和点N的坐标;

在抛物线的对称轴上找一点Q,使|AQBQ|的值最大,请直接写出点Q的坐标;

是否存在点P,使四边形MNPD为菱形?并说明理由;

2)当点P的横坐标为1时,是否存在这样的抛物线,使得以BPD为顶点的三角形与△AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,∠ACB90°AC6cmBC8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0t2),连接PQ

1)若BPQABC相似,求t的值;

2)试探究t为何值时,BPQ的面积是cm2

3)直接写出t为何值时,BPQ是等腰三角形;

4)连接AQCP,若AQCP,直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABACADBC于点DEAB上一点,以CE为直径的OBC于点F,连接DO,且∠DOC=90°.

(1)求证:ABO的切线;

(2)若DF=2,DC=6,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为_____(答案用根号表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】动画片《小猪佩奇》风靡全球,受到孩子们的喜爱,现有4张(小猪佩奇)角色卡片,分别是A佩奇.B乔治.C佩奇妈妈.D佩奇爸爸(四张卡片除字母和内容外,其余完全相同)姐弟两人做游戏,他们讲这四张卡片混在一起,背面朝上放好.

1)姐姐从中随机抽取一张,求恰好抽到A佩奇的概率;

2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的方法求出恰好姐姐抽到A佩奇,弟弟抽到B乔治的概率.

查看答案和解析>>

同步练习册答案