精英家教网 > 初中数学 > 题目详情

【题目】如图1,在矩形ABCD中,AC为对角线,延长CD至点E使CE=CA,连接AE。F为AB上一点,且BF=DE,连接FC.

(1)若DE=1,CF=2,求CD的长。

(2)如图2,点G为线段AE的中点,连接BG交AC于H,若∠BHC+∠ABG=600,求证:AF+CE=AC.

【答案】(1)3;(2)见解析.

【解析】分析:(1)先证明△ADE≌△CBF,可得AE=CF= ,设CD=x,则CE=AC=x+1 ,在Rt△ACD中根据勾股定理列方程求解;

(2)延长BGCD的延长线于点M先证明ABGEMG从而可得CE+AF= 2CD,由等腰三角形的性质和三角形外角的性质可求M=∠MCG=∠ACG=∠ABG=15°,从而ACD=30,cos∠ACD=,进而可证明结论.

详解:(1)解:矩形ABCD ,

AD=BC,∠ADC=∠ABC=90 .

∠ADE+∠ADC=180

∠ADC=90

∴∠ADC=∠ABC .

∵BF=DE ,

△ADE≌△CBF ,

AE=CF=

在Rt△ABC中,

AD=

设CD=x,则CE=AC=x+1 ,

解得:

即:

(2)证明:延长BG交CD的延长线于点M

易证△ABG≌EMG,

GM=GB,AB=CD,∠ABG=∠M,

又BF=ED,

∴AF=ME.

∴CE+AF=CE+ME=2CD,

连接CG, 在Rt△MCB,

CG=MG,

∠M=∠MCG.

又CA=CE,且点G是AE的中点,

∠MCG=∠ACG,

又∠BHC=∠M+∠MCG+∠ACG, ∠BHC+∠ABG=60,

∴∠M=∠MCG=∠ACG=∠ABG=15

ACD=30

∵cos∠ACD=,

,

∴AF+CE=AC.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠BAC90°ABAC,点DBC的中点,直角∠MDN绕点D旋转,DMDN分别与边ABAC交于EF两点,下列结论:①△DEF是等腰直角三角形;②AECF③△BDE≌△ADFBECFEF,其中正确结论是( )

A. ①②④ B. ②③④

C. ①②③ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E(0,3),O(0,0),C(4,0)在⊙A上,BE是⊙A上的一条弦.则sin∠OBE=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小文同学统计了他所在小区居民每天微信阅读的时间,并绘制了直方图.有以下说法:①小文同学一共统计了60人;②每天微信阅读不足20分钟的人数有8人;③每天微信阅读3040分钟的人数最多;④每天微信阅读010分钟的人数最少.根据图中信息,上述说法中正确的是(  )

A. ①②③④ B. ①②③ C. ②③④ D. ③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD的面积为20,对角线AC,BD相交于点O,点E,F分别是AB,CD上的点,且AE=DF,则图中阴影部分的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知三角形的两边长分别为57,则第三边的中线长x的取值范围是( )

A. B. C. D. 无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点ADy轴正半轴上,点BC分别在x轴上,CD平分∠ACB,与y轴交于D点,∠CAO=90°-BDO.

1)求证:AC=BC

2)如图2,点C的坐标为(40),点EAC上一点,且∠DEA=DBO,求BC+EC的长;

3)如图3,过DDFACF点,点HFC上一动点,点GOC上一动点,当HFC上移动、点GOC上移动时,始终满足∠GDH=GDO+FDH,试判断FHGHOG这三者之间的数量关系,写出你的结论并加以证明.

(图3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是等腰直角三角形,∠C=90°,BD平分∠CBAAC于点DDEABE.若△ADE的周长为8cmAB_____ cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于( )

A.3:4
B. :2
C. :2
D.2

查看答案和解析>>

同步练习册答案