精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数.

1)用配方法求出函数的顶点坐标;

2)求出该二次函数图象与轴的交点坐标。

3)该图象向右平移 个单位,可使平移后所得图象经过坐标原点.请直接写出平移后所得图象与轴的另一个交点的坐标为 .

【答案】1)(-1,8);(2;(33;(4,0

【解析】

1)利用配方法将一般式转化为顶点式,然后求顶点坐标即可;

2)将y=0代入,求出x的值,即可求出该二次函数图象与轴的交点坐标;

3)根据坐标与图形的平移规律即可得出结论.

解:(1

∴二次函数的顶点坐标为(-1,8);

2)将y=0代入,得

解得:

∴该二次函数图象与轴的交点坐标为

3)∵向右平移3个单位后与原点重合

∴该图象向右平移3个单位,可使平移后所得图象经过坐标原点,

此时也向右平移了3个单位,平移后的坐标为(4,0

即平移后所得图象与轴的另一个交点的坐标为(4,0

故答案为:3;(4,0).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,线段AB为⊙O的一条弦,以AB为直角边作等腰直角ABC,直线AC恰好是⊙O的切线,点D为⊙O上的一点,连接DADBDC,若DA3DB4,则DC的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为O的直径,AC、DC为弦,ACD=60°,P为AB延长线上的点,APD=30°.

(1)求证:DP是O的切线;

(2)若O的半径为3cm,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】李师傅驾驶出租车匀速地从西安市送客到咸阳国际机场,全程约,设小汽车的行驶时间为 (单位:),行驶速度为(单位:),且全程速度限定为不超过.

1)求关于的函数表达式;

2)李师傅上午点驾驶小汽车从西安市出发.需在分钟后将乘客送达咸阳国际机场,求小汽车行驶速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】己知:如图,抛物线与坐标轴分别交于点 是线段上方抛物线上的一个动点,

(1)求抛物线解析式:

(2)当点运动到什么位置时,的面积最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场将每件进价为80元的A商品按每件100元出售,一天可售出128件.经过市场调查,发现这种商品的销售单价每降低1元,其日销量可增加8件.设该商品每件降价x元,商场一天可通过A商品获利润y元.

(1)求y与x之间的函数解析式(不必写出自变量x的取值范围)

(2)A商品销售单价为多少时,该商场每天通过A商品所获的利润最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB的中点D.若⊙O的半径为,AB=4,则BC的长是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将BCD沿直线CD折叠,使点B恰好落在OA边上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.

(1)求点E坐标及经过O,D,C三点的抛物线的解析式;

(2)一动点P从点C出发,沿CB以每秒2个单位长的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长的速度向点C运动,当点P到达点B时,两点同时停止运动.设运动时间为t秒,当t为何值时,DP=DQ;

(3)若点N在(2)中的抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使得以M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,PA是⊙O的切线,切点为AAC是⊙O的直径,连接OP交⊙OE.过A点作ABPO于点D,交⊙OB,连接BCPB

1)求证:PB是⊙O的切线;

2)求证:E为△PAB的内心;

3)若cosPABBC1,求PO的长.

查看答案和解析>>

同步练习册答案