精英家教网 > 初中数学 > 题目详情

【题目】如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB的中点D.若⊙O的半径为,AB=4,则BC的长是(  )

A. B. C. D.

【答案】B

【解析】连接OD、AC、DC、OB、OC,作CEABE,OFCEF,如图,利用垂径定理得到ODAB,则AD=BD=AB=2,于是根据勾股定理可计算出OD=1,再利用折叠的性质可判断弧AC和弧CD所在的圆为等圆,则根据圆周角定理得到,所以AC=DC,利用等腰三角形的性质得AE=DE=1,接着证明四边形ODEF为正方形得到OF=EF=1,然后计算出CF后得到CE=BE=3,于是得到BC=3

连接OD、AC、DC、OB、OC,作CEABE,OFCEF,如图,

DAB的中点,

ODAB,

AD=BD=AB=2,

RtOBD中,OD==1,

∵将弧沿BC折叠后刚好经过AB的中点D,

∴弧AC和弧CD所在的圆为等圆,

AC=DC,

AE=DE=1,

易得四边形ODEF为正方形,

OF=EF=1,

RtOCF中,CF==2,

CE=CF+EF=2+1=3,

BE=BD+DE=2+1=3,

BC=3

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,BE平分∠ABCAC于点E,作EDEBAB于点D,OBED的外接圆.

(1)求证:AC是⊙O的切线;

(2)已知⊙O的半径为2.5,BE=4,求BC,AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们规定:当x取任意一个值时,x对应的函数值分别为y1y2,若y1≠y2,取y1y2中较小值为M;若y1=y2,记M=y1=y2①当x>2时,M=y2②当x<0时,Mx的增大而增大;③使得M大于4x的值不存在;④若M=2,则x=1.上述结论正确的是_____(填写所有正确结论的序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】杨老师为了了解所教班级学生课后复习的具体情况,对本班部分学生进行了一个月的跟踪调查,然后将调查结果分成四类:A:优秀;B:良好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图.

请根据统计图解答下列问题:

(1)本次调查中,杨老师一共调查了   名学生,其中C类女生有   名,D类男生有   名;

(2)补全上面的条形统计图和扇形统计图;

(3)在此次调查中,小平属于D类.为了进步,她请杨老师从被调查的A类学生中随机选取一位同学,和她进行一帮一的课后互助学习.请求出所选的同学恰好是一位女同学的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线DE上有一点O,过点O在直线DE上方作射线OC,将直角三角板AOB(∠OAB=30°)的直角顶点放在点O处,一条直角边OA在射线OD上,另一边OB在直线DE上方.将直角三角板绕点O按每秒10°的速度逆时针旋转得到三角形A'OB',三角形AOB旋转一周后停止旋转,设旋转时间为t秒.若射线OC的位置保持不变,COD=40°

1)如图1,在旋转过程中,当边A'B'与直线DE相交于点F时,请用含t的代数式分别表示A'OCB'OF的度数,并求出A'OCB'OF的值;

2)如图2,当t=7时,试说明直线A'B'//OC

3)在旋转过程中,若t=7,是否还存在某一时刻,使得A'B'//OC;若存在,请求出符合条件的t值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某电子超市销售甲、乙两种型号的蓝牙音箱,每台进价分别为240元,140元,下表是近两周的销售情况:(销售收入=销售单价×销售数量)

销售时段

销售数量

销售收入

甲种型号

乙种型号

第一周

3

7

2160

第二周

5

14

4020

求甲、乙两种型号蓝牙音箱的销售单价.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】利用对称性可设计出美丽的图案.在边长为1的方格纸中,有如图所示的四边形(顶点都在格点上)

(1)先作出该四边形关于直线成轴对称的图形,再作出你所作的图形连同原四边形绕0点按顺时针方向旋转90o后的图形;

(2)完成上述设计后,整个图案的面积等于_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)解方程:4x+12-169=0

2)一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(π3)是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四边形ABCD的对角线ACBD互相垂直,则下列条件能判定四边形ABCD为菱形的是( )

A. ACBD互相平分

B. BABC

C. ACBD

D. ABCD

查看答案和解析>>

同步练习册答案