【题目】如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,那么下列结论错误的是( )
A.∠A+∠DCB=90°B.∠ADC= 2∠BC. AB=2CDD. BC=CD
【答案】D
【解析】
根据直角三角形斜边上的中线性质得出CD=AD=BD,根据等边对等角得出∠DCB=∠B,再逐个判断即可.
A、∵在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,
∴CD=AD=BD=AB,
∴∠DCB=∠B,
∵∠ACB=90°,
∴∠A+∠B=90°,
∴∠A+∠DCB=90°,故本选项正确,不合题意;
B、∵∠DCB=∠B,∠ADC=∠B+∠DCB,
∴∠ADC=2∠B,故本选项正确,不合题意;
C、∵在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,
∴AB=2CD,故本选项正确,不合题意;
D、根据已知不能推出BC=CD,故本选项错误,符合题意;
故选:D.
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交弧AC于点D,过点D作⊙O的切线,交BA的延长线于点E.
(1)求证:AC∥DE;
(2)连接AD、CD、OC.填空
①当∠OAC的度数为 时,四边形AOCD为菱形;
②当OA=AE=2时,四边形ACDE的面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形 ABCD 中,AD∥BC,AB=BC,对角线 AC、BD 交于点 O,BD 平分∠ABC,过点 D 作 DE⊥BC 交 BC 的延长线于点 E.连接 OE.
(1)求证:四边形 ABCD 是菱形;
(2)若 tan∠DBC= ,AB= ,求线段 OE 的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,顶点为A的抛物线与x轴交于B、C两点,与y轴交于点D,已知A(1,4),B(3,0).
(1)求抛物线对应的二次函数表达式;
(2)探究:如图1,连接OA,作DE∥OA交BA的延长线于点E,连接OE交AD于点F,M是BE的中点,则OM是否将四边形OBAD分成面积相等的两部分?请说明理由;
(3)应用:如图2,P(m,n)是抛物线在第四象限的图象上的点,且m+n=﹣1,连接PA、PC,在线段PC上确定一点M,使AN平分四边形ADCP的面积,求点N的坐标.提示:若点A、B的坐标分别为(x1,y1)、(x2,y2),则线段AB的中点坐标为(,).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线与x轴交于不同的两点和,与y轴交于点C,且是方程的两个根().
【1】求抛物线的解析式;
【2】过点A作AD∥CB交抛物线于点D,求四边形ACBD的面积;
【3】如果P是线段AC上的一个动点(不与点A、C重合),过点P作平行于x轴的直线l交BC于点Q,那么在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(新知探究)新定义:平面内两定点 A, B ,所有满足 k ( k 为定值)的 P 点形成的图形是圆,我们把这种圆称之为“阿氏圆”,
(问题解决)如图,在ABC 中,CB 4 , AB 2AC ,则ABC 面积的最大值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知平行四边形ABCD中,AB=BC,BC=10,∠BCD=60°,两顶点B、D分别在平面直角坐标系的y轴、x轴的正半轴上滑动,连接OA,则OA的长的最小值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=2020,a7=-2018,a98=-1,且满足任意相邻三个数的和为常数,则a1+a2+a3+…+a98+a99+a100的值为( )
A.1985B.-1985C.2019D.-2019
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于,两点(点在点的左侧),与轴相交于点,顶点为,连接,与抛物线的对称轴交于点,点为线段上的一个动点(不与,两点重合),过点作轴的垂线交抛物线于点,设点的横坐标为
(1)当为何值时,四边形为平行四边形;
(2)设的面积为,求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com