【题目】如图,抛物线与轴交于,两点(点在点的左侧),与轴相交于点,顶点为,连接,与抛物线的对称轴交于点,点为线段上的一个动点(不与,两点重合),过点作轴的垂线交抛物线于点,设点的横坐标为
(1)当为何值时,四边形为平行四边形;
(2)设的面积为,求的最大值.
【答案】(1)当时,四边形为平行四边形;(2)的最大值为.
【解析】
(1)对于抛物线解析式,令x=0求出y的值确定出C的坐标,令y=0求出x的值,确定出A与B坐标,根据B与C坐标,利用待定系数法确定出直线BC解析式,进而表示出E与P坐标,根据抛物线解析式确定出D与F坐标,表示出PF,利用平行四边形的判定方法确定出m的值即可;
(2)先求出OB的长,△BCF面积,列出S关于m的二次函数解析式,利用二次函数性质确定出S的最大值即可.
(1)对于抛物线,
顶点
令,得到;
令,得到,即,
解得:或,
则,,,抛物线对称轴为直线;
设直线的函数解析式为,
把,分别代入得:,
解得:,,
直线的解析式为,
当时,,
,
,
轴,
,,
线段,
连接,由,得到当时,四边形为平行四边形,
由,得到或(不合题意,舍去),
当时,四边形为平行四边形;
(2),
,
,
则当时,取得最大值为.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,那么下列结论错误的是( )
A.∠A+∠DCB=90°B.∠ADC= 2∠BC. AB=2CDD. BC=CD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某单位要将一份宣传资料进行批量印刷.在甲印刷厂,在收取100元制版费的基础上,每份收费0.5元;在乙印刷厂,在收取40元侧版费的基础上,每份收费0.7元.设该单位要印刷此宣传资料份(为正整数).
(Ⅰ)根据题意,填写下表:
印剧数量(份) | 150 | 250 | 350 | 450 | … |
甲印刷厂收费(元) | 175 | ① | 275 | ② | … |
乙印刷厂收费(元) | 145 | 215 | ③ | 355 | … |
(Ⅱ)设在甲印刷厂收费元,在乙印刷厂收费元,分别写出,关于的函数解析式;
(Ⅲ)当时,在哪家印刷厂花费少?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt∠AOB的平分线ON上依次取点C,F,M,过点C作DE⊥OC,分别交OA,OB于点D,E,以FM为对角线作菱形FGMH.已知∠DFE=∠GFH=120°,FG=FE,设OC=x,图中阴影部分面积为y,则y与x之间的函数关系式是( )
A. y= B. y= C. y=2 D. y=3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,等边三角形的边长为2,是边上的任一点(与不重合),设,连接,以为边向两侧作等边三角形和等边三角形,分别与边交于点.
(1)求证:;
(2)求四边形与△ABC重叠部分的面积与之间的函数关系式及的最小值;
(3)如图②,连接,分别与边交于点.当为何值时,.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】笔直的海岸线上依次有A,B,C三个港口,甲船从A港口出发,沿海岸线匀速驶向C港口,1小时后乙船从B港口出发,沿海岸线匀速驶向A港口,两船同时到达目的地.甲船的速度是乙船的1.25倍,甲、乙两船与B港口的距离y(km)与甲船行驶时间x(h)之间的函数关系如图所示.给出下列说法:①A,B港口相距400km;②甲船的速度为100km/h;③B,C港口相距200km;④乙船出发4h时,两船相距220km.其中正确的个数是( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线经过点,,直线:交轴于点,且与抛物线交于,两点,为抛物线上一动点(不与,重合).
(1)求抛物线的解析式;
(2)当点在直线下方时,过点作轴交于点,轴交于点,求的最大值.
(3)设为直线上的点,以,,,为顶点的四边形能否构成平行四边形?若能,求出点的坐标;若不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com