【题目】如图①,等边三角形的边长为2,是边上的任一点(与不重合),设,连接,以为边向两侧作等边三角形和等边三角形,分别与边交于点.
(1)求证:;
(2)求四边形与△ABC重叠部分的面积与之间的函数关系式及的最小值;
(3)如图②,连接,分别与边交于点.当为何值时,.
【答案】(1)证明见解析;(2);的最小值为;(3)当时,.
【解析】
(1)根据等边三角形性质得出,据此通过证明△ADM和△APN全等后利用全等三角形性质证明结论即可;
(2)作于点,首先结合(1)中结论得出四边形与△ABC重叠部分四边形的面积的面积,之后利用勾股定理以及三角函数的概念求出△ADP的面积,由此进一步分析求解即可;
(3)连接PG,利用菱形的性质以及等腰直角三角形的性质进一步进行计算即可.
(1)证明:∵△ABC,△APD,△APE都是等边三角形,
∴,
∴.
在△ADM和△APN中,
∵
∴△ADM△APN(ASA),
∴;
(2)如图,作于点.
∵△ADM△APN
∴四边形与△ABC重叠部分四边形的面积的面积.
∵,,
∴,,
∴,
由勾股定理,得,
∵是等边三角形,
∴△ADP的面积=,
即:,
∴的最小值为;
(3)连接,如图:
当时,
∵,
∴.
易知四边形是菱形,
∴.
∴,
∴.
∴.
∵,
∴,,
∴.
解得.
∴当时,.
科目:初中数学 来源: 题型:
【题目】(新知探究)新定义:平面内两定点 A, B ,所有满足 k ( k 为定值)的 P 点形成的图形是圆,我们把这种圆称之为“阿氏圆”,
(问题解决)如图,在ABC 中,CB 4 , AB 2AC ,则ABC 面积的最大值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】七年级同学最喜欢看哪一类课外书?某校随机抽取七年级部分同学对此进行问卷调査(每人只选择一种最喜欢的书籍类型).如图是根据调查结果绘制的两幅统计图(不完整).请根据统计图信息,解答下列问题:
(1)一共有多少名学生参与了本次问卷调查;
(2)补全条形统计图,并求出扇形统计图中“其他”所在扇形的圆心角度数;
(3)若该年级有400名学生,请你估计该年级喜欢“科普常识”的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点,点在轴上,以为直径作,点在轴上,且在点上方,过点作的切线,为切点,如果点在第一象限,则称为点的离点.例如,图1中的为点的一个离点.
(1)已知点,为的离点.
①如图2,若,则圆心的坐标为__________,线段的长为__________;
②若,求线段的长;
(2)已知,直线.
①当时,若直线上存在的离点,则点纵坐标的最大值为__________;
②记直线在的部分为图形,如果图形上存在的离点,直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于,两点(点在点的左侧),与轴相交于点,顶点为,连接,与抛物线的对称轴交于点,点为线段上的一个动点(不与,两点重合),过点作轴的垂线交抛物线于点,设点的横坐标为
(1)当为何值时,四边形为平行四边形;
(2)设的面积为,求的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,AB是⊙O的直径,CD是⊙O的弦且与AB交于点E(E不与O重合),CE=DE,点F在弧AD上,连接AD、CF、DF,CF交AB于点H,交AD于点G.
(1)如图1,求证:∠CFD=2∠BAD;
(2)如图2,过点B作BN⊥CF于点N,交⊙O于点M,求证:FN=CN+DF;
(3)如图3,在(2)的条件下,延长CF至点Q,连接QA并延长交BM的延长线于点P,若∠Q=∠ADF,HE=BE,AQ=2DG=10,求线段PN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用水平线和竖起线将平面分成若干个边长为1的小正方形格子,小正方形的顶点称为格点,以格点为顶点的多边形称为格点多边形.设格点多边形的面积为S,该多边形各边上的格点个数和为a,内部的格点个数为b,则(史称“皮克公式”).
小明认真研究了“皮克公式”,并受此启发对正三角开形网格中的类似问题进行探究:正三角形网格中每个小正三角形面积为1,小正三角形的顶点为格点,以格点为顶点的多边形称为格点多边形,下图是该正三角形格点
中的两个多边形:
根据图中提供的信息填表:
格点多边形各边上的格点的个数 | 格点边多边形内部的格点个数 | 格点多边形的面积 | |
多边形1 | 8 | 1 | |
多边形2 | 7 | 3 | |
… | … | … | … |
一般格点多边形 | a | b | S |
则S与a、b之间的关系为S= (用含a、b的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(感知)如图1,在平面直角坐标系中,点的坐标为,点的坐标为,将线段绕着点按逆时针方向旋转至线段,过点作轴,垂足为点,易知,得到点的坐标为.
(探究)如图2,在平面直角坐标系中,点的坐标为,点的坐标为,将线段绕着点按逆时针方向旋转至线段.
(1)求点的坐标.(用含的代数式表示)
(2)求出BC所在直线的函数表达式.
(拓展)如图3,在平面直角坐标系中,点的坐标为,点在轴上,将线段绕着点按逆时针方向旋转至线段,连结、,则的最小值为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=x2+bx+c的图像与x轴交于A,B两点,B点坐标为(4,0),与y轴交于点C(0,4).点D为抛物线上一点
(1)求抛物线的解析式及A点坐标;
(2)若△BCD是以BC为直角边的直角三角形时,求点D的坐标;
(3)若△BCD是锐角三角形,请直接写出点D的横坐标m的取值范围 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com