精英家教网 > 初中数学 > 题目详情

【题目】用水平线和竖起线将平面分成若干个边长为1的小正方形格子,小正方形的顶点称为格点,以格点为顶点的多边形称为格点多边形.设格点多边形的面积为S,该多边形各边上的格点个数和为a,内部的格点个数为b,则(史称皮克公式).

小明认真研究了皮克公式,并受此启发对正三角开形网格中的类似问题进行探究:正三角形网格中每个小正三角形面积为1,小正三角形的顶点为格点,以格点为顶点的多边形称为格点多边形,下图是该正三角形格点

中的两个多边形:

根据图中提供的信息填表:


格点多边形各边上的格点的个数

格点边多边形内部的格点个数

格点多边形的面积

多边形1

8

1


多边形2

7

3






一般格点多边形

a

b

S

Sab之间的关系为S=   (用含ab的代数式表示).

【答案】详见解析

【解析】

根据8=8+2(1﹣1),11=7+2(3﹣1)得到S=a+2(b﹣1).

解:填表如下:


格点多边形各边上的格点的个数

格点边多边形内部的格点个数

格点多边形的面积

多边形1

8

1

8

多边形2

7

3

11





一般格点多边形

a

b

S

a+2(b﹣1)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图已知直线与抛物线y=ax2+bx+c相交于A(﹣10),B4m)两点,抛物线y=ax2+bx+cy轴于点C0,﹣),交x轴正半轴于D点,抛物线的顶点为M

1)求抛物线的解析式;

2)设点P为直线AB下方的抛物线上一动点,当△PAB的面积最大时,求△PAB的面积及点P的坐标;

3)若点Qx轴上一动点,点N在抛物线上且位于其对称轴右侧,当△QMN与△MAD相似时,求N点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形内接于,点上,,过点的切线,分别交的延长线于点

1)求证:

2)若,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,等边三角形的边长为2边上的任一点(不重合),设,连接,以为边向两侧作等边三角形和等边三角形,分别与边交于点

(1)求证:

(2)求四边形与△ABC重叠部分的面积之间的函数关系式及的最小值;

(3)如图②,连接,分别与边交于点.当为何值时,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】笔直的海岸线上依次有ABC三个港口,甲船从A港口出发,沿海岸线匀速驶向C港口,1小时后乙船从B港口出发,沿海岸线匀速驶向A港口,两船同时到达目的地.甲船的速度是乙船的1.25倍,甲、乙两船与B港口的距离ykm)与甲船行驶时间xh)之间的函数关系如图所示.给出下列说法:①AB港口相距400km;②甲船的速度为100km/h;③BC港口相距200km;④乙船出发4h时,两船相距220km.其中正确的个数是(

A.4B.3C.2D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过点作直线的垂线,垂足为点,过点轴,垂足为点,过点,垂足为点,这样依次下去,得到一组线段,则线段的长为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线经过点,直线轴于点,且与抛物线交于两点,为抛物线上一动点(不与重合).

1)求抛物线的解析式;

2)当点在直线下方时,过点轴交于点轴交于点,求的最大值.

3)设为直线上的点,以为顶点的四边形能否构成平行四边形?若能,求出点的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将CBE沿CE折叠,使点B落在矩形内点F处,下列结论正确的是_____(写出所有正确结论的序号)

①当E为线段AB中点时,AFCE;

②当E为线段AB中点时,AF=

③当A、F、C三点共线时,AE=

④当A、F、C三点共线时,CEF≌△AEF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线yax2+2ax+ca≠0)与x轴交于点AB10)两点,与y轴交于点C,且OAOC

1)求抛物线的解析式;

2)点D是抛物线顶点,求ACD的面积;

3)如图2,射线AE交抛物线于点E,交y轴的负半轴于点F(点F在线段AE上),点P是直线AE下方抛物线上的一点,SABE,求APE面积的最大值和此动点P的坐标.

查看答案和解析>>

同步练习册答案