【题目】用水平线和竖起线将平面分成若干个边长为1的小正方形格子,小正方形的顶点称为格点,以格点为顶点的多边形称为格点多边形.设格点多边形的面积为S,该多边形各边上的格点个数和为a,内部的格点个数为b,则(史称“皮克公式”).
小明认真研究了“皮克公式”,并受此启发对正三角开形网格中的类似问题进行探究:正三角形网格中每个小正三角形面积为1,小正三角形的顶点为格点,以格点为顶点的多边形称为格点多边形,下图是该正三角形格点
中的两个多边形:
根据图中提供的信息填表:
格点多边形各边上的格点的个数 | 格点边多边形内部的格点个数 | 格点多边形的面积 | |
多边形1 | 8 | 1 | |
多边形2 | 7 | 3 | |
… | … | … | … |
一般格点多边形 | a | b | S |
则S与a、b之间的关系为S= (用含a、b的代数式表示).
科目:初中数学 来源: 题型:
【题目】如图已知直线与抛物线y=ax2+bx+c相交于A(﹣1,0),B(4,m)两点,抛物线y=ax2+bx+c交y轴于点C(0,﹣),交x轴正半轴于D点,抛物线的顶点为M.
(1)求抛物线的解析式;
(2)设点P为直线AB下方的抛物线上一动点,当△PAB的面积最大时,求△PAB的面积及点P的坐标;
(3)若点Q为x轴上一动点,点N在抛物线上且位于其对称轴右侧,当△QMN与△MAD相似时,求N点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,等边三角形的边长为2,是边上的任一点(与不重合),设,连接,以为边向两侧作等边三角形和等边三角形,分别与边交于点.
(1)求证:;
(2)求四边形与△ABC重叠部分的面积与之间的函数关系式及的最小值;
(3)如图②,连接,分别与边交于点.当为何值时,.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】笔直的海岸线上依次有A,B,C三个港口,甲船从A港口出发,沿海岸线匀速驶向C港口,1小时后乙船从B港口出发,沿海岸线匀速驶向A港口,两船同时到达目的地.甲船的速度是乙船的1.25倍,甲、乙两船与B港口的距离y(km)与甲船行驶时间x(h)之间的函数关系如图所示.给出下列说法:①A,B港口相距400km;②甲船的速度为100km/h;③B,C港口相距200km;④乙船出发4h时,两船相距220km.其中正确的个数是( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线经过点,,直线:交轴于点,且与抛物线交于,两点,为抛物线上一动点(不与,重合).
(1)求抛物线的解析式;
(2)当点在直线下方时,过点作轴交于点,轴交于点,求的最大值.
(3)设为直线上的点,以,,,为顶点的四边形能否构成平行四边形?若能,求出点的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将△CBE沿CE折叠,使点B落在矩形内点F处,下列结论正确的是_____(写出所有正确结论的序号)
①当E为线段AB中点时,AF∥CE;
②当E为线段AB中点时,AF=;
③当A、F、C三点共线时,AE=;
④当A、F、C三点共线时,△CEF≌△AEF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=ax2+2ax+c(a≠0)与x轴交于点A,B(1,0)两点,与y轴交于点C,且OA=OC.
(1)求抛物线的解析式;
(2)点D是抛物线顶点,求△ACD的面积;
(3)如图2,射线AE交抛物线于点E,交y轴的负半轴于点F(点F在线段AE上),点P是直线AE下方抛物线上的一点,S△ABE=,求△APE面积的最大值和此动点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com