分析 根据勾股定理以及旋转性质即可求出PP′,欲求PC只要证明△PP′C是直角三角形,然后利用勾股定理解决.
解答
解:∵△BCP′是由△ABP顺时针旋转90°所得
∴BP′=BP=4,P′C=AP=2,∠PBP′=90°,
∴PP′=$\sqrt{P{B}^{2}+P′{B}^{2}}$=$\sqrt{{4}^{2}+{4}^{2}}$=4$\sqrt{2}$.
∵∠BP′C=∠BPA=135°,
∴∠PP′C=∠BP′C-∠BP′P=135°-45°=90°,
∴PC=$\sqrt{P′{P}^{2}+P′{C}^{2}}$=$\sqrt{(4\sqrt{2})^{2}+{2}^{2}}$=6.
点评 本题考查正方形的性质、旋转的性质、勾股定理等知识,解题的关键是135°角的应用,由135°推出∠PP′C=90°,属于中考常考题型.
科目:初中数学 来源: 题型:选择题
| A. | 3和-3 | B. | 3和-$\frac{1}{3}$ | C. | -3和$\frac{1}{3}$ | D. | 3和$\frac{1}{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 条形统计图 | B. | 扇形统计图 | C. | 折线统计图 | D. | 频数分布直方图 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $x-\frac{1}{x}=3$ | B. | x+xy=-1 | C. | $\frac{x}{3}-\frac{y}{5}=6$ | D. | x2-2x-1=0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com