Èçͼ£¬ÒÑÖª¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏó¾­¹ýÈýµãA£¨-1£¬0£©£¬B£¨3£¬0£©£¬C£¨0£¬3£©£¬ËüµÄ¶¥µãΪM£¬ÓÖÕý±ÈÀýº¯Êýy=kxµÄͼÏóÓë¶þ´Îº¯ÊýÏཻÓÚÁ½µãD¡¢E£¬ÇÒPÊÇÏ߶ÎDEµÄÖе㣮
£¨1£©Çó¸Ã¶þ´Îº¯ÊýµÄ½âÎöʽ£¬²¢Çóº¯Êý¶¥µãMµÄ×ø±ê£»
£¨2£©ÒÑÖªµãE£¨2£¬3£©£¬ÇÒ¶þ´Îº¯ÊýµÄº¯ÊýÖµ´óÓÚÕý±ÈÀýº¯Êýֵʱ£¬ÊÔ¸ù¾Ýº¯ÊýͼÏóÇó³ö·ûºÏÌõ¼þµÄ×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§£»
£¨3£©µ±kΪºÎֵʱÇÒ0£¼k£¼2£¬ÇóËıßÐÎPCMBµÄÃæ»ýΪ
93
16
£®
£¨²Î¿¼¹«Ê½£ºÒÑÖªÁ½µãD£¨x1£¬y1£©£¬E£¨x2£¬y2£©£¬ÔòÏ߶ÎDEµÄÖеã×ø±êΪ(
x1+x2
2
£¬
y1+y2
2
)
£©
·ÖÎö£º£¨1£©ÒÑÖª¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏó¾­¹ýÈýµãA£¨-1£¬0£©£¬B£¨3£¬0£©£¬C£¨0£¬3£©£¬¿ÉÇó¶þ´Îº¯Êý½âÎöʽ£¬²¢È·¶¨¶¥µã×ø±ê£»
£¨2£©°ÑE£¨2£¬3£©´úÈëy=kxÖеÃÕý±ÈÀýº¯Êý½âÎöʽ£¬ÁªÁ¢Õý±ÈÀýº¯Êý½âÎöʽºÍÅ×ÎïÏß½âÎöʽ£¬¿ÉµÃDµã×ø±ê£¬¸ù¾ÝͼÏóÇó³ö·ûºÏÌõ¼þµÄxµÄ·¶Î§£»
£¨3£©ÇóÖ±ÏßÓëÅ×ÎïÏߵĽ»µãD£¬EµÄ×ø±ê£¬¸ù¾ÝÖеã×ø±ê¹«Ê½Çó³öPµã×ø±ê£¬ÀûÓø·¨±íʾËıßÐÎPCMBµÄÃæ»ý£¬½ø¶øµÃ³öËıßÐÎPCMBµÄÃæ»ýΪ
93
16
ʱ£¬kµÄÖµ£®
½â´ð£º½â£º£¨1£©ÓÉy=ax2+bx+c£¬ÔòµÃ£º
a-b+c=0
9a+3b+c=0
c=3
£¬
½âµÃ£º
a=-1
b=2
c=3
£¬
¹Êº¯Êý½âÎöʽΪ£ºy=-x2+2x+3=-£¨x-1£© 2+4£¬
µÃ³öµãM£¨1£¬4£©£®

£¨2£©ÓɵãE£¨2£¬3£©ÔÚÕý±ÈÀýº¯Êýy=kxµÄͼÏóÉϵãº
3=2k£¬
k=
3
2
£¬¹Êy=
3
2
x£¬
ÓÉ
y=
3
2
x
y=-x2+2x+3
£¬
½âµÃ£»
x=-
3
2
y=-
9
4
£¬
¹ÊDµã×ø±êΪ£º£¨-
3
2
£¬-
9
4
£©£¬
ÓÉͼÏó¿ÉÖª£¬µ±¶þ´Îº¯ÊýµÄº¯ÊýÖµ´óÓÚÕý±ÈÀýº¯Êýʱ£¬×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§ÊÇ-
3
2
£¼x£¼2£®

£¨3£©
y=kx
y=-x 2+2x+3
£¬
½âµÃ£ºµãD£¬E×ø±êΪD£¨
2-k-
k2-4k+16
2
£¬
2-k-
k2-4k+16
2
•k£©£¬
E£¨
2-k+
k2-4k+16
2
£¬
2-k+
k2-4k+16
2
•k£©£¬
ÔòµãP×ø±êΪP£¨
2-k
2
£¬
2-k
2
•k£©ÓÉ0£¼k£¼2£¬ÖªµãPÔÚµÚÒ»ÏóÏÞ£¬
ÓɵãB£¨3£¬0£©£¬C£¨0£¬3£©£¬M£¨1£¬4£©£¬
µÃSËıßÐÎPOMB=
1¡Á(3+4)
2
+
1
2
¡Á2¡Á4=
15
2
£¬
ÔòSËıßÐÎPCMB=
15
2
-S¡÷OPC-S¡÷OPB=
15
2
-
1
2
¡Á3¡Á
2-k
2
-
1
2
¡Á3¡Á
2-k
2
•k£¬
ÕûÀíµÃ³ö£ºSËıßÐÎPCMB=
3
4
£¨k-
1
2
£©2+
93
16
£¬
ÒªÇóµ±kΪºÎֵʱÇÒ0£¼k£¼2£¬ËıßÐÎPCMBµÄÃæ»ýΪ
93
16
£¬
µÃ³ö
93
16
=
3
4
£¨k-
1
2
£©2+
93
16
£¬
¼´0=
3
4
£¨k-
1
2
£©2£¬
¹Êµ±k=
1
2
ʱ£¬ËıßÐÎPCMBµÄÃæ»ýΪ
93
16
£®
µãÆÀ£º±¾Ì⿼²éÁ˶þ´Îº¯Êý½âÎöʽµÄÇó·¨ÒÔ¼°ËıßÐÎÃæ»ýÔËË㣬ѧ»áÓÃÁ½¸öº¯Êý½»µãºá×ø±ê±íʾÁ½¸öº¯ÊýÖµµÄ´óС¹Øϵ£¬²¢¶Ô¶þ´Îº¯Êý½øÐÐÔËÓÃÊǽâÌâÖص㣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖª¶þ´Îº¯ÊýͼÏóµÄ¶¥µã×ø±êΪC£¨1£¬1£©£¬Ö±Ïßy=kx+mµÄͼÏóÓë¸Ã¶þ´Îº¯ÊýµÄͼÏó½»ÓÚA¡¢BÁ½µã£¬ÆäÖÐAµã×ø±êΪ£¨
5
2
£¬
13
4
£©£¬BµãÔÚyÖáÉÏ£¬Ö±ÏßÓëxÖáµÄ½»µãΪF£¬PΪÏ߶ÎABÉϵÄÒ»¸ö¶¯µã£¨µãPÓëA¡¢B²»Öغϣ©£¬¹ýP×÷xÖáµÄ´¹ÏßÓëÕâ¸ö¶þ´Îº¯ÊýµÄͼÏó½»ÓÚEµã£®
£¨1£©Çók£¬mµÄÖµ¼°Õâ¸ö¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©ÉèÏ߶ÎPEµÄ³¤Îªh£¬µãPµÄºá×ø±êΪx£¬ÇóhÓëxÖ®¼äµÄº¯Êý¹Øϵʽ£¬²¢Ð´³ö×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§£»
£¨3£©DΪֱÏßABÓëÕâ¸ö¶þ´Îº¯ÊýͼÏó¶Ô³ÆÖáµÄ½»µã£¬ÔÚÏ߶ÎABÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹µÃÒÔµãP¡¢E¡¢DΪ¶¥µãµÄ¾«Ó¢¼Ò½ÌÍøÈý½ÇÐÎÓë¡÷BOFÏàËÆ£¿Èô´æÔÚ£¬ÇëÇó³öPµãµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖª¶þ´Îº¯Êýy=ax2+bx+3£¨a¡Ù0£©µÄͼÏóÓëxÖá½»ÓÚµãA£¨-1£¬0£©ºÍµãB£¨3£¬0£©Á½µã£¨µãAÔÚµãBµÄ×ó±ß£©£¬ÓëyÖá½»ÓÚµãC£®
£¨1£©Çó´Ë¶þ´Îº¯ÊýµÄ½âÎöʽ£¬²¢Ð´³öËüµÄ¶Ô³ÆÖ᣻
£¨2£©ÈôÖ±Ïßl£ºy=kx£¨k£¾0£©ÓëÏ߶ÎBC½»ÓÚµãD£¨²»ÓëµãB£¬CÖغϣ©£¬ÔòÊÇ·ñ´æÔÚÕâÑùµÄÖ±Ïßl£¬Ê¹µÃÒÔB£¬O£¬DΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷BACÏàËÆ£¿Èô´æÔÚ£¬Çó³öµãDµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©ÈôÖ±Ïßl¡ä£ºy=mÓë¸ÃÅ×ÎïÏß½»ÓÚM¡¢NÁ½µã£¬ÇÒÒÔMNΪֱ¾¶µÄÔ²ÓëxÖáÏàÇУ¬Çó¸ÃÔ²°ë¾¶µÄ³¤¶È£®
¾«Ó¢¼Ò½ÌÍø

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÒÑÖª¶þ´Îº¯ÊýͼÏóµÄ¶¥µã×ø±êΪC£¨1£¬0£©£¬Ö±Ïßy=x+bÓë¸Ã¶þ´Îº¯ÊýµÄͼÏó½»ÓÚA¡¢BÁ½µã£¬ÆäÖеãAµÄ×ø±êΪ£¨3£¬4£©£¬µãBÔÚyÖáÉÏ£®µãPΪÏ߶ÎABÉϵÄÒ»¸ö¶¯µã£¨µãPÓëA¡¢B²»Öغϣ©£¬¹ýµãP×÷xÖáµÄ´¹ÏßÓë¸Ã¶þ´Îº¯ÊýµÄͼÏó½»ÓÚµãE£®
£¨1£©ÇóbµÄÖµ¼°Õâ¸ö¶þ´Îº¯ÊýµÄ¹Øϵʽ£»
£¨2£©ÉèÏ߶ÎPEµÄ³¤Îªh£¬µãPµÄºá×ø±êΪx£¬ÇóhÓëxÖ®¼äµÄº¯Êý¹Øϵʽ£¬²¢Ð´³ö×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§£»
£¨3£©ÈôµãDΪֱÏßABÓë¸Ã¶þ´Îº¯ÊýµÄͼÏó¶Ô³ÆÖáµÄ½»µã£¬ÔòËıßÐÎDCEPÄÜ·ñ¹¹³ÉƽÐÐËıßÐΣ¿Èç¹ûÄÜ£¬ÇëÇó³ö´ËʱPµãµÄ×ø±ê£»Èç¹û²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®
£¨4£©ÒÔPEΪֱ¾¶µÄÔ²ÄÜ·ñÓëyÖáÏàÇУ¿Èç¹ûÄÜ£¬ÇëÇó³öµãPµÄ×ø±ê£»Èç¹û²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÒÑÖª¶þ´Îº¯Êýy=ax2-4x+cµÄͼÏóÓë×ø±êÖá½»ÓÚµãA£¨-1£¬0£©ºÍµãC£¨0£¬-5£©£®
£¨1£©Çó¸Ã¶þ´Îº¯ÊýµÄ½âÎöʽºÍËüÓëxÖáµÄÁíÒ»¸ö½»µãBµÄ×ø±ê£®
£¨2£©ÔÚÉÏÃæËùÇó¶þ´Îº¯ÊýµÄ¶Ô³ÆÖáÉÏ´æÔÚÒ»µãP£¨2£¬-2£©£¬Á¬½ÓOP£¬ÕÒ³öxÖáÉÏËùÓеãMµÄ×ø±ê£¬Ê¹µÃ¡÷OPMÊǵÈÑüÈý½ÇÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ºâˮһģ£©Èçͼ£¬ÒÑÖª¶þ´Îº¯Êýy=-
12
x2+bx+c
µÄͼÏó¾­¹ýA£¨2£¬0£©¡¢B£¨0£¬-6£©Á½µã£®
£¨1£©ÇóÕâ¸ö¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©Éè¸Ã¶þ´Îº¯ÊýͼÏóµÄ¶Ô³ÆÖáÓëxÖá½»ÓÚµãC£¬Á¬½ÓBA¡¢BC£¬Çó¡÷ABCµÄÃæ»ý£»
£¨3£©ÈôÅ×ÎïÏߵĶ¥µãΪD£¬ÔÚyÖáÉÏÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹µÃ¡÷PADµÄÖܳ¤×îС£¿Èô´æÔÚ£¬Çó³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸