精英家教网 > 初中数学 > 题目详情
如图,已知BE⊥AD,CF⊥AD,垂足分别是E,F,且BE=CF,请判断AD是△ABC的中线吗?说明你判断的理由.
分析:由BE⊥AD,CF⊥AD,BE=CF,以及对顶角相等:∠BDE=∠CDE,即可利用AAS证得△BED≌△CFD,然后由全等三角形的对应边相等,证得BD=CD,即可得AD是△ABC的中线.
解答:解:AD是△ABC的中线,理由如下:…(1分)
∵BE⊥AD,CF⊥AD,
∴∠BED=∠CFD=90°,…(2分)
在△BED和△CFD中,
∠BDE=∠CDF
∠BED=∠CFD
BE=CF

∴△BED≌△CFD(AAS),…(4分)
∴BD=CD,…(5分)
∴AD是△ABC的中线.…(6分)
点评:此题考查了全等三角形的判定与性质.此题比较简单,注意利用AAS证得△BED≌△CFD是解此题的关键,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、如图,已知BE⊥AD,CF⊥AD,且BE=CF,那么AD是△ABC的中线还是角平分线?
中线

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知BE⊥AD,CF⊥AD,且BE=CF.
求证:△BDE≌△CDF.

查看答案和解析>>

科目:初中数学 来源: 题型:

判断下列命题的真假,并给出证明(若是真命题给出证明,若是假命题举出反例):
(1)若
a2
=3
,则a=3;
(2)如图,已知BE⊥AD,CF⊥AD,垂足分别为点E,F,且BE=CF.则AD是△ABC的中线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知BE⊥AD,CF⊥AD,且BE=CF.
(1)请你判断AD是否为△ABC的中线;
(2)当AB与AC满足什么条件时,AD是△ABC的角平分线?请分析说明理由.

查看答案和解析>>

同步练习册答案