精英家教网 > 初中数学 > 题目详情

【题目】如图,将矩形ABCO放在直角坐标系中,其中顶点B的坐标为(10, 8),EBC边上一点将ABE沿AE折叠,点B刚好与OC边上点D重合,过点E的反比例函数y=的图象与边AB交于点F, 则线段AF的长为( )

A. B. 2 C. D.

【答案】A

【解析】

首先根据翻折变换的性质,可得AD=AB=10,DE=BE;然后设点E的坐标是(10,b),在RtCDE中,根据勾股定理,求出CE的长度,进而求出k的值是多少;最后用k的值除以点F的纵坐标,求出线段AF的长为多少即可.

∵△ABE沿AE折叠,点B刚好与OC边上点D重合,

AD=AB=10,DE=BE,

AO=8,AD=10,

OD==6,CD=10-6=4,

设点E的坐标是(10,b),

CE=b,DE=10-b,

CD2+CE2=DE2

42+b2=(8-b)2

解得b=3,

∴点E的坐标是(10,3),

k=10×3=30,

∴线段AF的长为:

30÷8=

故选:A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=kx和双曲线在第一象限相交于点A(1,2),点B在y轴上,且AB⊥y轴.有一动点P从原点出发沿y轴以每秒1个单位的速度向y轴的正方向运动,运动时间为t秒(t>0),过点P作PD⊥y轴,交直线OA于点C,交双曲线于点D.

(1)求直线y=kx和双曲线的函数关系式;

(2)设四边形CDAB的面积为S,当P在线段OB上运动时(P不与B点重合),求S与t之间的函数关系式;

(3)在图中第一象限的双曲线上是否存在点Q,使以A、B、C、Q四点为顶点的四边形是平行四边形?若存在,请求出此时t的值和Q点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的有(  )

最大的负整数是﹣1;②|a|=a;③a+5一定比a大;④38万用科学记数法表示为38×104;⑤单项式﹣ 的系数是﹣2,次数是3;⑥﹣<﹣;⑦长方体的截面中,边数最多的多边形是七边形.

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°DE分别为ABAC边上的中点,连接DE,将△ADE绕点E旋转180°得到△CFE,连接AFAC

1)求证:四边形ADCF是菱形;

2)若BC=8AC=6,求四边形ABCF的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A、B、C在同一直线上,H为AC的中点,M为AB的中点,N为BC的中点,则下列说法:①MN=HC;②MH=(AH﹣HB);③MN=(AC+HB);④HN=(HC+HB),其中正确的是( )

A.①② B.①②④ C.②③④ D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论是(填写序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线yk1x(x≥0)与双曲线y (x0)相交于点P(24).已知点A(40)B(03),连接AB,将RtAOB沿OP方向平移,使点O移动到点P,得到APB′.过点AACy轴交双曲线于点C,连接CP.

(1)k1k2的值;

(2)求直线PC的解析式;

(3)直接写出线段AB扫过的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的2018年元月份的月历表中,任意框出表中竖列上四个数,这四个数的和可能是(  )

A. 86 B. 78 C. 60 D. 101

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,对角线AC、BD交于点O,EOC上动点(与点O不重合),作AF⊥BE,垂足为G,交BOH.连接OG、CG.

(1)求证:AH=BE;

(2)试探究:∠AGO 的度数是否为定值?请说明理由;

(3)OG⊥CG,BG=,求△OGC的面积.

查看答案和解析>>

同步练习册答案