分析 (1)根据分式的值为0的条件求出x的值,再求出分式的值大于0时x的取值范围即可;
(2)、(3)根据分式的值为0的条件求出x的值,再分两种情况进行讨论即可;
(4)根据分式的值为0的条件求出x的值,再由二次根式有意义的条件即可得出分式大于0时x的取值范围.
解答 解:(1)∵分式$\frac{x+2}{{x}^{2}+1}$的值等于0,
∴x+2=0,即x=-2.
∵$\frac{x+2}{{x}^{2}+1}$>0,
∴x+2>0,解得x>-2;
(2)∵分式$\frac{2x+3}{3x+2}$的值等于0,
∴$\left\{\begin{array}{l}2x+3=0\\ 3x+2≠0\end{array}\right.$,解得x=-$\frac{3}{2}$;
∵$\frac{2x+3}{3x+2}$>0,
∴$\left\{\begin{array}{l}2x+3>0\\ 3x+2>0\end{array}\right.$或$\left\{\begin{array}{l}2x+3<0\\ 3x+2<0\end{array}\right.$,解得x>-$\frac{2}{3}$或x<-$\frac{3}{2}$;
(3)∵分式$\frac{x}{8x-6}$的值等于0,
∴$\left\{\begin{array}{l}x=0\\ 8x-6≠0\end{array}\right.$,解得x=0;
∵$\frac{x}{8x-6}$>0,
∴$\left\{\begin{array}{l}x>0\\ 8x-6>0\end{array}\right.$或$\left\{\begin{array}{l}x<0\\ 8x-6<0\end{array}\right.$,解得x>$\frac{6}{8}$或x<0;
(4)∵分式$\frac{5x}{\sqrt{2x-12}}$的值等于0,
∴$\left\{\begin{array}{l}5x=0\\ 2x-12>0\end{array}\right.$,此时x无解;
∵$\frac{5x}{\sqrt{2x-12}}$>0,
∴$\left\{\begin{array}{l}5x>0\\ 2x-12>0\end{array}\right.$,解得x>6.
点评 本题考查的是分式的值为0的条件,熟知分式值为零的条件是分子等于零且分母不等于零是解答此题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | -$\frac{3}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{5}{8}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com