问题情境:如图1,直角三角板ABC中,∠C=90°,AC=BC,将一个用足够长的的细铁丝制作的直角的顶点D放在直角三角板ABC的斜边AB上,再将该直角绕点D旋转,并使其两边分别与三角板的AC边、BC边交于P、Q两点。
问题探究:(1)在旋转过程中,
①如图2,当AD=BD时,线段DP、DQ有何数量关系?并说明理由。
②如图3,当AD=2BD时,线段DP、DQ有何数量关系?并说明理由。
③根据你对①、②的探究结果,试写出当AD=nBD时,DP、DQ满足的数量关系为_______________(直接写出结论,不必证明)
(2)当AD=BD时,若AB=20,连接PQ,设△DPQ的面积为S,在旋转过程中,S是否存在最小值或最大值?若存在,求出最小值或最大值;若不存在,请说明理由。
![]()
图1 图2 图3
(1)①DP=DQ
理由:连接CD,
,△ABC是等腰直角三角形,
,∠A=∠DCQ,∠ADC=90°,∴∠ADP+∠PDC=∠CDQ+∠PDC=90°,
∴∠ADP=∠CDQ,∴△ADP≌△CDQ,
②
。
理由:如图,过点D作DM⊥AC、DN⊥BC,垂足分别为M、N,
![]()
∴∠DMP=∠DNQ=90°,∴∠MDP=∠NDQ,
∴△DPM∽△DQN,
。
∵∠AMD=∠DNB=90°,∠A=∠B,
∴△AMD∽△BND,
。
,
。
③
。
(2)存在,设
,由(1)①知
,
![]()
,
当DP⊥AC时,x最小,最小值是
,此时,S有最小值,
当点P与点A重合时,x最大,最大值是10,此时,S有最大值,![]()
科目:初中数学 来源: 题型:
有四张正面分别标有数字2,1,﹣3,﹣4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m,再随机地摸取一张,将卡片上的数字记为n.
(1)请画出树状图并写出(m,n)所有可能的结果;
(2)求所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
为响应吉安市2014年创建国家级卫生城市的号召,某校对八年级各班文明行为劝导志愿者人数进行了统计,各班统计人数有6名、5名、4名、3名、2名、1名共计六种情况,并制作如下两幅不完整的统计图。
(1)求该年级平均每班有多少文明行为劝导志愿者?并将条形图补充完整;
(2)该校决定本周开展主题实践活动,从八年级只有2名文明行为劝导志愿者的班级中任选两名,请用列表或画树状图的方法,求出所选文明行为劝导志愿者有两名来自同一班级的概率。
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,矩形OABC中,A(6,0)、C(0,2
)、D(0,3
),射线l过点D且与x轴平行,点P、Q分别是l和x轴正半轴上动点,满足∠PQO=60°.
![]()
(1)①点B的坐标是 ;②∠CAO= 度;③当点Q与点A重合时,点P的坐标为 ▲ ;(直接写出答案)
(2)设OA的中点为N,PQ与线段AC相交于点M,是否存在点P,使△AMN为等腰三角形?若存在,请直接写出点P的横坐标为m;若不存在,请说明理由.
(3)设点P的横坐标为x,△OPQ与矩形OABC的重叠部分的面积为S,试求
S与x的函数关系式和相应的自变
量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,将三角板的直角顶点放在⊙O的圆心上,两条直角边分别交⊙O于A、B两点,点P在优弧AB上,且与点A、B不重合,连结PA、PB.则∠APB的大小为 度.
(
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com