【题目】某小区游泳馆夏季推出两种收费方式.方式一:先购买会员证,会员证200元,只限本人当年使用,凭证游泳每次需另付费10元:方式二:不购买会员证,每次游泳需付费20元.
(1)若甲计划今年夏季游泳的费用为500元,则选择哪种付费方式游泳次数比较多?
(2)若乙计划今年夏季游泳的次数超过15次,则选择哪种付费方式游泳花费比较少?
【答案】(1)费用500元则选择方式一游泳的次数多;(2)当游泳次数小于20次时选择方式二花费少;当游泳次数等于20次时两种方式费用一样:当游泳次数大于20次选择方式一花费少.
【解析】
(1)根据两种付费方式,分别求出游泳次数,比较即可得答案;
(2)设付费方式一、二的费用为y1和y2,游泳次数为x,费用的差为y,根据付费方式可得出y1和y2关于x的解析式,即可得出y关于x的解析式,根据一次函数的性质即可得答案.
(1)方式一:,
方式二:,
∵30>25,
∴费用500元时,选择方式一游泳的次数多.
(2)设付费方式一、二的费用为y1和y2,游泳次数为x,费用的差为y,
根据题意得:y1=200+10x,y2=20x,
∴y=y1-y2=-10x+200,
当y=0时,x=20,
∵-10<0,
∴y随x的增大而减小,
当x>20时,y<0,
∴方式一花费比较少,
当x<20时,y>0,
∴方式二花费比较少,
综上所述,超过15次时分情况可得;当游泳次数小于20次时选择方式二花费少;当游泳次数等于20次时两种方式费用一样:当游泳次数大于20次选择方式一花费少.
科目:初中数学 来源: 题型:
【题目】在一个不透明的盒子里装有3个分别写有数字﹣2,0,1的小球,它们除了数字不同以外其余完全相同,先从盒子里随机抽取1个小球,再从剩下的小球中抽取1个,将这两个小球上的数字依次记为a,b,则满足关于x的方程x2+ax+b=0有实数根的概率为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知等腰△ABC,∠ACB=120°,P是线段CB上一动点(与点C,B不重合),连接AP,延长BC至点Q,使得∠PAC=∠QAC,过点Q作射线QH交线段AP于H,交AB于点M,使得∠AHQ=60°.
(1)若∠PAC=α,求∠AMQ的大小(用含α的式子表示);
(2)用等式表示线段QC和BM之间的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形中,,延长至点,使得过点作,交线段于点.设
(1)连结,请求出的度数和的半径(用的代数式表示). (直接写出答案)
(2)证明:点是的中点.
(3)如图2,延长至点,使得, 连结,交于点
①连结,当与四边形其它三边中的一边相等时,请求出所有满足条件的的值.
②当点关于直线对称点恰好落在上,连结.记和的面积分别为,请直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=8,BC=12,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设PA=x.
(1)求证:△PFA∽△ABE;
(2)当点P在线段AD上运动时,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;
(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出DP满足的条件: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中的每个小正方形边长都是个单位长度,的顶点均在格点上.建立平面直角坐标系后,点的坐标为,点的坐标为,点的坐标为.
(1)先将向左平移个单位长度,再向下平移个单位长度得到(点、、的对应点分别为、、),请在图中画出;
(2)再将绕点逆时针旋转后得到(点、、的对应点分别为、、),试在图中画出,并直接写出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为个单位长度的小正方形组成的的网格中,给出了格点(网格线的交点)为端点的线段
(1)将线段通过平移使得点和点重合,点的对应点为,则应该先将线段向 平移个单位,再向上平移 个 单位,画出平移后对应的线段;
(2)将线段绕点按顺时针方向旋转点的对应点为 ,画出线段
(3)填空:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,假设每次发出的乒乓球的运动路线固定不变,且落在中线上,在乒乓球运行时,设乒乓球与端点A的水平距离为x(米),与桌面的高度为y(米),经多次测试后,得到如下部分数据:
x/米 | 0 | 0.2 | 0.4 | 0.6 | 1 | 1.4 | 1.6 | 1.8 | … |
y/米 | 0.24 | 0.33 | 0.4 | 0.45 | 0.49 | 0.45 | 0.4 | 0.33 | … |
(1)由表中的数据及函数学习经验,求出y关于x的函数解析式;
(2)试求出当乒乓球落在桌面时,其落点与端点A的水平距离是多少米?
(3)当乒乓球落在桌面上弹起后,y与x之间满足.
①用含a的代数式表示k;
②已知球网高度为0.14米,球桌长(1.4×2)米.若a=-0.5,那么乒乓球弹起后,是否有机会在某个击球点可以将球沿直线扣杀到端点A?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=-2x+mx+n经过点A(0,2),B(3,-4).
(1)求该抛物线的函数表达式及对称轴;
(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点),如果直线CD与图象G有两个公共点,结合函数的图象,求点D纵坐标t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com