【题目】如图1,在矩形中,,延长至点,使得过点作,交线段于点.设
(1)连结,请求出的度数和的半径(用的代数式表示). (直接写出答案)
(2)证明:点是的中点.
(3)如图2,延长至点,使得, 连结,交于点
①连结,当与四边形其它三边中的一边相等时,请求出所有满足条件的的值.
②当点关于直线对称点恰好落在上,连结.记和的面积分别为,请直接写出的值.
【答案】(1)90°,;(2)详见解析;(3)①,或,或;②
【解析】
(1)利用圆心角与圆周角的关系可得到:∠BOD=2∠BED=2×45°=90°,再通过构造全等三角形,最后利用勾股定理求解即可;
(2)连结,利用勾股定理计算得到 从而求解 可得结论,
(3)①要分三种情况进行分类讨论:DH=BD或DH=BE或DH=EH,可得答案. ②利用对称性质,相似三角形性质求得BD、DC、DE、DH的值,作G′P⊥GE,DQ⊥GE,利用同底三角形面积之比等于高之比求得: 利用进行转化,可得答案.
解:(1)如图1,过点O作OM⊥AD于M交BC于N,
∵ABCD是矩形,AB=x,AD=2AB
∴AB=CD=x,BC=AD=2x,∠A=∠ADC=∠BCD=∠ABC=∠BCE=90°,BC∥AD
∵CE=BC
∴∠BED=∠CBE=45°
∴∠BOD=2∠BED=2×45°=90°
∴∠BON+∠DOM=90°
∵OM⊥AD,BC∥AD
∴OM⊥BC
∴∠AMO=∠OMD=∠BNO=90°
∴∠ODM+∠DOM=90°
∴∠BON=∠ODM,
∵OB=OD,
∴△BON≌△ODM(AAS)
∴BN=OM,ON=DM
∵∠A=∠ABC=∠AMO=90°
∴ABNM是矩形
∴AM=BN,MN=AB=x
∴AD=AM+DM=OM+DM=MN+2DM,
即:2x=x+2DM,DM= x
∴OM=MN+ON=MN+DM=
∴OD=
即⊙O的半径为
如图1,连结,
在矩形中
为的直径,
点是的中点.
(3)①如图2,当时,
,
,
.
,
.
如图2,当时,
经检验:是原方程的根,且符合题意.
如图3,连结当时,
为的中位线,
综上:,当与四边形其它三边中的一边相等时, 的值为或或.
②如图4,过D作DQ⊥GE于Q,过G′作G′P⊥GE延长线于P,
连接GG′、G′B、G′E、G′H、G′D,GG′交DH于T,
∵G,G′关于DH对称,
∴GG′⊥DH,GG′=2GT,
∠HG′D=∠HGD,
∵∠HG′D=∠HED,
∴∠HED=∠HGD=45°
∴DG=DE,
即:10-x=3x,解得:x=,
由①知:此时,BD=DH=,直径BH=,
DG=DG′=DE=,HS=ES=
∵∠BDC+∠EDH=∠EDH+∠GDT=90°,
∴∠BDC=∠GDT
∴△BDC∽△GDT
∴
∴DT=,TG=TG′=
TH=DH-DT=
GH=
∵G′P⊥GE
∴∠P=∠GTH=90°,∠HGT=∠G′GP
∴△GG′P∽△GHT
∴ 即:
解得:G′P=
∵DQGH=GTDH,
即:
解得:DQ=
∴
∴
∴G′E∥BH
∴S△BEG′=S△G′EH
∴
即:
科目:初中数学 来源: 题型:
【题目】为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.
(1)该班共有 名留守学生,B类型留守学生所在扇形的圆心角的度数为 ;
(2)将条形统计图补充完整;
(3)已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,长度为6千米的国道两侧有,两个城镇,从城镇到公路分别有乡镇公路连接,连接点为和,其中、之间的距离为2千米,、之间的距离为1千米,、之间的乡镇公路长度为2.3千米,、之间的乡镇公路长度为3.2千米,为了发展乡镇经济,方便两个城镇的物资输送,现需要在国道上修建一个物流基地,设、之间的距离为千米,物流基地沿公路到、两个城镇的距离之和为干米,以下是对函数随自变量的变化规律进行的探究,请补充完整.
(1)通过取点、画图、测量,得到与的几组值,如下表:
/千米 | 0 | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 |
/千米 | 10.5 | 8.5 | 6.5 | 10.5 | 12.5 |
(2)如图2,建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.
(3)结合画出的函数图象,解决问题:
①若要使物流基地沿公路到、两个城镇的距离之和最小,则物流基地应该修建在何处?(写出所有满足条件的位置)
答:__________.
②如右图,有四个城镇、、、分别位于国道两侧,从城镇到公路分别有乡镇公路连接,若要在国道上修建一个物流基地,使得沿公路到、、、的距离之和最小,则物流基地应该修建在何处?(写出所有满足条件的位置)
答:__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小李经营一家水果店,某日到水果批发市场批发一种水果.经了解,一次性批发这种水果不得少于,超过时,所有这种水果的批发单价均为3元.图中折线表示批发单价(元)与质量的函数关系.
(1)求图中线段所在直线的函数表达式;
(2)小李用800元一次可以批发这种水果的质量是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,点为上的一点,在同侧作正方形,正方形分别为对角线的中点,连结当点沿着线段由点向点方向上移动时,四边形的面积变化情况为( )
A.不变B.先减小后增大
C.先增大后减小D.一直减小
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1是一种折叠门,由上下轨道和两扇长宽相等的活页门组成,整个活页门的右轴固定在门框
上,通过推动左侧活页门开关;图2是其俯视图简化示意图,已知轨道 ,两扇活页门的宽 ,点固定,当点在上左右运动时,与的长度不变(所有结果保留小数点后一位).
(1)若,求的长;
(2)当点从点向右运动60时,求点在此过程中运动的路径长.
(参考数据:sin50°≈0.77, cos50°≈0.64, tan50°≈1.19, π取3.14)
图1 图2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某小区游泳馆夏季推出两种收费方式.方式一:先购买会员证,会员证200元,只限本人当年使用,凭证游泳每次需另付费10元:方式二:不购买会员证,每次游泳需付费20元.
(1)若甲计划今年夏季游泳的费用为500元,则选择哪种付费方式游泳次数比较多?
(2)若乙计划今年夏季游泳的次数超过15次,则选择哪种付费方式游泳花费比较少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,AB⊥AC,AB=,BC=,对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F,下列说法:①在旋转过程中,AF=CE. ②OB=AC,③在旋转过程中,四边形ABEF的面积为,④当直线AC绕点O顺时针旋转30°时,连接BF,DE则四边形BEDF是菱形,其中正确的是( )
A.①②④B.① ②C.①②③④D.② ③ ④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】参照学习函数的过程方法,探究函数的图像与性质,因为,即,所以我们对比函数来探究列表:
… | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | … | ||||
… | 1 | 2 | 4 | -4 | -2 | -1 | … | ||||||
… | 2 | 3 | 5 | -3 | -2 | 0 | … |
描点:在平面直角坐标系中以自变量的取值为横坐标,以相应的函数值为纵坐标,描出相应的点如图所示:
(1)请把轴左边各点和右边各点分别用一条光滑曲线,顺次连接起来;
(2)观察图象并分析表格,回答下列问题:
①当时,随的增大而______;(“增大”或“减小”)
②的图象是由的图象向______平移______个单位而得到的;
③图象关于点______中心对称.(填点的坐标)
(3)函数与直线交于点,,求的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com