精英家教网 > 初中数学 > 题目详情

【题目】如图,已知,上的一点,在同侧作正方形,正方形分别为对角线的中点,连结当点沿着线段由点向点方向上移动时,四边形的面积变化情况为( )

A.不变B.先减小后增大

C.先增大后减小D.一直减小

【答案】B

【解析】

连接DGDM,把四边形面积分成三个三角形面积,设AD=x,则DE=10-x,则这三个三角形的面积均可用x表示出来,根据所得的函数式分析其变化规律.

解:连接DGDM AD=x,则DE=10-x

∵四边形ABCD和四边形DEFH都是正方形,且GM为对角线的中点,

∴△ADG和△DME都是等腰直角三角形.

DG= DM=

∴四边形AGME的面积=ADG面积+DME面积+GDM面积

=

=

这是一个开口向上,对称轴是直线的抛物线,

时,面积有最小值.

所以其面积变化是先减小后增大,

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】2020年初新冠肺炎疫情爆发以来,国内经济--度被按下暂停键,如今随着国内疫情防控形势持续向好,各地开始进人积极复工复产的新模式.某商家为降低疫情带来的影响,刺激消费,吸引顾客,特此设计了一个游戏,其规则是:分别转动如图所示的两个可以自由转动的转盘各一次,每次指针落在每一字母区域的机会均等(若指针恰好落在分界线上则重转),当两个转盘的指针所指字母相同时,消费者就可以获得一次八折优惠价购买商品的机会.

1)用树状图或列表的方法表示出游戏可能出现的所有结果;

2)若小亮参加一次游戏,则他能获得八折优惠价购买商品的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】骆驼被称为沙漠之舟,它的体温随时间的变化而发生较大变化,其体温()与时间(小时)之间的关系如图1所示.

小清同学根据图1绘制了图2,则图2中的变量有可能表示的是( ).

A.骆驼在时刻的体温与0时体温的绝对差(即差的绝对值)

B.骆驼从0时到时刻之间的最高体温与当日最低体温的差

C.骆驼在时刻的体温与当日平均体温的绝对差

D.骆驼从0时到时刻之间的体温最大值与最小值的差

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等腰△ABC,∠ACB=120°,P是线段CB上一动点(与点CB不重合),连接AP,延长BC至点Q,使得∠PAC=QAC,过点Q作射线QH交线段APH,交AB于点M,使得∠AHQ=60°.

1)若∠PAC,求∠AMQ的大小(用含α的式子表示);

2)用等式表示线段QCBM之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,抛物线,直线

(1)时,求抛物线与轴交点的坐标;

(2)直线是否可能经过抛物线的顶点,如果可能,请求出的值,如果不可能,请说明理由;

(3),当时,求的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形中,,延长至点,使得过点,交线段于点.设

1)连结,请求出的度数和的半径(的代数式表示) (直接写出答案)

2)证明:的中点.

3)如图2,延长至点,使得, 连结,于点

①连结,与四边形其它三边中的一边相等时,请求出所有满足条件的的值.

②当点关于直线对称点恰好落在上,连结.记的面积分别为,请直接写出的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=8BC=12EBC边的中点,点P在线段AD上,过PPFAEF,设PA=x

1)求证:△PFA∽△ABE

2)当点P在线段AD上运动时,是否存在实数x,使得以点PFE为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;

3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出DP满足的条件:   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为个单位长度的小正方形组成的的网格中,给出了格点(网格线的交点)为端点的线段

(1)将线段通过平移使得点和点重合,点的对应点为,则应该先将线段 平移个单位,再向上平移 单位,画出平移后对应的线段

(2)将线段点按顺时针方向旋转点的对应点为 ,画出线段

(3)填空:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD为矩形,以A为圆心,AD为半径的弧交AB的延长线于点E,连接BD,若AD=2AB=4,则图中阴影部分的面积为______

查看答案和解析>>

同步练习册答案