精英家教网 > 初中数学 > 题目详情

【题目】骆驼被称为沙漠之舟,它的体温随时间的变化而发生较大变化,其体温()与时间(小时)之间的关系如图1所示.

小清同学根据图1绘制了图2,则图2中的变量有可能表示的是( ).

A.骆驼在时刻的体温与0时体温的绝对差(即差的绝对值)

B.骆驼从0时到时刻之间的最高体温与当日最低体温的差

C.骆驼在时刻的体温与当日平均体温的绝对差

D.骆驼从0时到时刻之间的体温最大值与最小值的差

【答案】B

【解析】

根据时间和体温的变化,将时间分为3段:0-44-88-1616-24,分别观察每段中的温差,由此即可求出答案.

解:观察可得从0时到4时,温差随时间的增大而增大,在4时达到最大,是2℃;再到8时,这段时间的最高温度是37℃,最低是35℃,温差不变,从8时开始,最高温度变大,最低温度不变是35℃,温差变大,达到3℃,从16时开始体温下降,温差不变.则图2中的变量有可能表示的是骆驼从0时到时刻之间的最高体温与当日最低体温的差.

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1的直径,点上,连接

1)求证:平分

2)如图2,连接,点上,连接交于点,求证:

3)在(2)的条件下,点上,连接交于点,若,求线段的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,已知∠ACB90°,∠A30°,BC6D为斜边AB上一点,以CDCB为边作平行四边形CDEB,当AD_____时,平行四边形CDEB为菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知.在RtOAB中,∠OAB=90°,∠BOA=30°OA=2,若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内,将RtOAB沿OB折叠后,点A落在第一象限内的点C处.

1)求经过点OCA三点的抛物线的解析式.

2)若点M是抛物线上一点,且位于线段OC的上方,连接MOMC,问:点M位于何处时三角形MOC的面积最大?并求出三角形MOC的最大面积.

3)抛物线上是否存在一点P,使∠OAP=BOC?若存在,请求出此时点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一只拉杆式旅行箱(图1),其侧面示意图如图2所示,已知箱体长AB=50cm,拉杆BC的伸长距离最大时可达35cm,点A,B,C在同一条直线上,在箱体底端装有圆形的滚筒轮⊙A,⊙A与水平地面相切于点D,在拉杆伸长到最大的情况下,当点B距离水平地面34cm时,点C到水平地面的距离CE55cm.AF MN.

1)求⊙A的半径.

2)当人的手自然下垂拉旅行箱时,人感到较为舒服,某人将手自然下垂在C端拉旅行箱时,CE76cm,∠CAF=64°,求此时拉杆BC的伸长距离(结果精确到1cm,参考数据:sin64°≈0.9,cos64°≈0.39,tan64°≈2.1).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,长度为6千米的国道两侧有两个城镇,从城镇到公路分别有乡镇公路连接,连接点为,其中之间的距离为2千米,之间的距离为1千米,之间的乡镇公路长度为2.3千米,之间的乡镇公路长度为3.2千米,为了发展乡镇经济,方便两个城镇的物资输送,现需要在国道上修建一个物流基地,设之间的距离为千米,物流基地沿公路到两个城镇的距离之和为干米,以下是对函数随自变量的变化规律进行的探究,请补充完整.

1)通过取点、画图、测量,得到的几组值,如下表:

/千米

0

1.0

2.0

3.0

4.0

5.0

6.0

/千米

10.5

8.5

6.5

10.5

12.5

2)如图2,建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.

3)结合画出的函数图象,解决问题:

①若要使物流基地沿公路到两个城镇的距离之和最小,则物流基地应该修建在何处?(写出所有满足条件的位置)

答:__________

②如右图,有四个城镇分别位于国道两侧,从城镇到公路分别有乡镇公路连接,若要在国道上修建一个物流基地,使得沿公路到的距离之和最小,则物流基地应该修建在何处?(写出所有满足条件的位置)

答:__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,∠C=90°,ADDB,点EAB的中点,DEBC

1)求证:BD平分∠ABC

2)连接EC,若∠A=30°,DC,求EC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,上的一点,在同侧作正方形,正方形分别为对角线的中点,连结当点沿着线段由点向点方向上移动时,四边形的面积变化情况为( )

A.不变B.先减小后增大

C.先增大后减小D.一直减小

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线yx+2x轴交于点A,与y轴交于点C.抛物线yax2+bx+c的对称轴是x=﹣且经过AC两点,与x轴的另一交点为点B

1直接写出点B的坐标;求抛物线解析式.

2)若点P为直线AC上方的抛物线上的一点,连接PAPC.求△PAC的面积的最大值,并求出此时点P的坐标.

3)抛物线上有一点M,过点MMN垂直x轴于点N,使得以点AMN为顶点的三角形与△ABC相似,直接写出点M的坐标.

查看答案和解析>>

同步练习册答案