【题目】骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大变化,其体温(
)与时间(小时)之间的关系如图1所示.
![]()
小清同学根据图1绘制了图2,则图2中的变量有可能表示的是( ).
A.骆驼在
时刻的体温与0时体温的绝对差(即差的绝对值)
B.骆驼从0时到
时刻之间的最高体温与当日最低体温的差
C.骆驼在
时刻的体温与当日平均体温的绝对差
D.骆驼从0时到
时刻之间的体温最大值与最小值的差
科目:初中数学 来源: 题型:
【题目】如图1,
,
是
的直径,点
在
上,连接
,
.
![]()
(1)求证:
平分
;
(2)如图2,连接
,点
在
上,连接
,
与
交于点
,求证:
;
(3)在(2)的条件下,点
在
上,连接
,
,
,
与
交于点
,若
,
,
,求线段
的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,已知∠ACB=90°,∠A=30°,BC=6,D为斜边AB上一点,以CD、CB为边作平行四边形CDEB,当AD=_____时,平行四边形CDEB为菱形.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知.在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=2
,若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内,将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.
![]()
(1)求经过点O,C,A三点的抛物线的解析式.
(2)若点M是抛物线上一点,且位于线段OC的上方,连接MO、MC,问:点M位于何处时三角形MOC的面积最大?并求出三角形MOC的最大面积.
(3)抛物线上是否存在一点P,使∠OAP=∠BOC?若存在,请求出此时点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一只拉杆式旅行箱(图1),其侧面示意图如图2所示,已知箱体长AB=50cm,拉杆BC的伸长距离最大时可达35cm,点A,B,C在同一条直线上,在箱体底端装有圆形的滚筒轮⊙A,⊙A与水平地面相切于点D,在拉杆伸长到最大的情况下,当点B距离水平地面34cm时,点C到水平地面的距离CE为55cm.设AF∥ MN.
![]()
(1)求⊙A的半径.
(2)当人的手自然下垂拉旅行箱时,人感到较为舒服,某人将手自然下垂在C端拉旅行箱时,CE为76cm,∠CAF=64°,求此时拉杆BC的伸长距离(结果精确到1cm,参考数据:sin64°≈0.9,cos64°≈0.39,tan64°≈2.1).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,长度为6千米的国道
两侧有
,
两个城镇,从城镇到公路分别有乡镇公路连接,连接点为
和
,其中
、
之间的距离为2千米,
、
之间的距离为1千米,
、
之间的乡镇公路长度为2.3千米,
、
之间的乡镇公路长度为3.2千米,为了发展乡镇经济,方便两个城镇的物资输送,现需要在国道
上修建一个物流基地
,设
、
之间的距离为
千米,物流基地
沿公路到
、
两个城镇的距离之和为
干米,以下是对函数
随自变量
的变化规律进行的探究,请补充完整.
![]()
(1)通过取点、画图、测量,得到
与
的几组值,如下表:
| 0 | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 |
| 10.5 | 8.5 | 6.5 | 10.5 | 12.5 |
(2)如图2,建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.
![]()
(3)结合画出的函数图象,解决问题:
①若要使物流基地
沿公路到
、
两个城镇的距离之和最小,则物流基地
应该修建在何处?(写出所有满足条件的位置)
答:__________.
②如右图,有四个城镇
、
、
、
分别位于国道
两侧,从城镇到公路分别有乡镇公路连接,若要在国道上修建一个物流基地
,使得
沿公路到
、
、
、
的距离之和最小,则物流基地
应该修建在何处?(写出所有满足条件的位置)
答:__________.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,∠C=90°,AD⊥DB,点E为AB的中点,DE∥BC.
(1)求证:BD平分∠ABC;
(2)连接EC,若∠A=30°,DC
,求EC的长.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知
,点
为
上的一点,在
同侧作正方形
,正方形
分别为对角线
的中点,连结
当点
沿着线段
由点
向点
方向上移动时,四边形
的面积变化情况为( )
![]()
A.不变B.先减小后增大
C.先增大后减小D.一直减小
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线y=
x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是x=﹣
且经过A、C两点,与x轴的另一交点为点B.
(1)①直接写出点B的坐标;②求抛物线解析式.
(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标.
(3)抛物线上有一点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似,直接写出点M的坐标.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com