精英家教网 > 初中数学 > 题目详情

【题目】已知.在RtOAB中,∠OAB=90°,∠BOA=30°OA=2,若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内,将RtOAB沿OB折叠后,点A落在第一象限内的点C处.

1)求经过点OCA三点的抛物线的解析式.

2)若点M是抛物线上一点,且位于线段OC的上方,连接MOMC,问:点M位于何处时三角形MOC的面积最大?并求出三角形MOC的最大面积.

3)抛物线上是否存在一点P,使∠OAP=BOC?若存在,请求出此时点P的坐标;若不存在,请说明理由.

【答案】1y=x2+2x;(2,;(3)存在,P()(,﹣)

【解析】

1)根据折叠的性质可得OC=OA,∠BOC=BAO=30°,过点CCDOAD,求出ODCD,然后写出点C的坐标,再利用待定系数法求二次函数解析式解答;
2)求出直线OC的解析式,根据点MOC的最大距离时,面积最大;平行于OC的直线与抛物线只有一个交点,利用根的判别式求出m的值,利用锐角三角函数的定义求解即可;
3)分两种情况求出直线APy轴的交点坐标,然后求出直线AP的解析式,与抛物线解析式联立求解即可得到点P的坐标.

解:(1)∵RtOAB沿OB折叠后,点A落在第一象限内的点C处,

OC=OA=2,∠BOC=BAO=30°

∴∠AOC=30°+30°=60°

过点CCDOAD

OD=×2=

CD=2×=3

所以,顶点C的坐标为(3),

设过点OCA抛物线的解析式为为y=ax2+bx

解得:

∴抛物线的解析式为y=x2+2x

2)∵C3),

∴直线OC的解析式为:

设点MOC的最大距离时,平行于OC的直线解析式为
联立
消掉未知数y并整理得,
=2-4m=0
解得:m=


∴点MOC的最大距离=×sin30°=

此时,M,最大面积为

3)∵∠OAP=BOC=BOA =30°

∴直线APy轴的交点坐标为(02)或(0,﹣2),

当直线AP经过点(0)、(02)时,解析式为

联立

解得

所以点P的坐标为(),

当直线AP经过点(0)、(0,﹣2)时,解析式为

联立

解得

所以点P的坐标为().

综上所述,存在一点P)或(﹣,﹣),使∠OAP=BOA

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的对角线ACBD交于点O,分别过点C. DCE∥BD,DE∥AC,CEDE交于点E.

(1)求证:四边形ODEC是矩形;

(2)当∠ADB=60°,AD=2时,求EA的长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2020年初新冠肺炎疫情爆发以来,国内经济--度被按下暂停键,如今随着国内疫情防控形势持续向好,各地开始进人积极复工复产的新模式.某商家为降低疫情带来的影响,刺激消费,吸引顾客,特此设计了一个游戏,其规则是:分别转动如图所示的两个可以自由转动的转盘各一次,每次指针落在每一字母区域的机会均等(若指针恰好落在分界线上则重转),当两个转盘的指针所指字母相同时,消费者就可以获得一次八折优惠价购买商品的机会.

1)用树状图或列表的方法表示出游戏可能出现的所有结果;

2)若小亮参加一次游戏,则他能获得八折优惠价购买商品的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的盒子里装有3个分别写有数字﹣201的小球,它们除了数字不同以外其余完全相同,先从盒子里随机抽取1个小球,再从剩下的小球中抽取1个,将这两个小球上的数字依次记为ab,则满足关于x的方程x2+ax+b0有实数根的概率为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的半径为4ABC均是⊙O的点,点D是∠BAC的平分线与⊙O的交点,若∠BAC=120°,则弦BD的长为 _____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字123

1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为   

2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】骆驼被称为沙漠之舟,它的体温随时间的变化而发生较大变化,其体温()与时间(小时)之间的关系如图1所示.

小清同学根据图1绘制了图2,则图2中的变量有可能表示的是( ).

A.骆驼在时刻的体温与0时体温的绝对差(即差的绝对值)

B.骆驼从0时到时刻之间的最高体温与当日最低体温的差

C.骆驼在时刻的体温与当日平均体温的绝对差

D.骆驼从0时到时刻之间的体温最大值与最小值的差

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等腰△ABC,∠ACB=120°,P是线段CB上一动点(与点CB不重合),连接AP,延长BC至点Q,使得∠PAC=QAC,过点Q作射线QH交线段APH,交AB于点M,使得∠AHQ=60°.

1)若∠PAC,求∠AMQ的大小(用含α的式子表示);

2)用等式表示线段QCBM之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为个单位长度的小正方形组成的的网格中,给出了格点(网格线的交点)为端点的线段

(1)将线段通过平移使得点和点重合,点的对应点为,则应该先将线段 平移个单位,再向上平移 单位,画出平移后对应的线段

(2)将线段点按顺时针方向旋转点的对应点为 ,画出线段

(3)填空:

查看答案和解析>>

同步练习册答案