精英家教网 > 初中数学 > 题目详情

【题目】如图,⊙O的半径为4ABC均是⊙O的点,点D是∠BAC的平分线与⊙O的交点,若∠BAC=120°,则弦BD的长为 _____________

【答案】4

【解析】

连结BCOBOC,延长DOBCH,利用角平分线定义得∠BAD=CAD=BAC=60°,则根据圆周角定理得到∠DBC=BCD=60°,于是可判断△BCD为等边三角形,所以BD=BC,∠BDC=60°;再利用∠ABD=CAD得到弧DC=DB,根据垂径定理的推论得到DHBCBH=CH,接着根据圆周角定理计算出∠BOH=60°,然后在RtBOH中根据含30度的直角三角形三边的关系可计算出BH=2,则BC=2BH=4,即BD=

解:连结BCOBOC,延长DOBCH,如图,


AD平分∠BAC
∴∠BAD=CAD=BAC=60°,
∴∠DBC=BCD=60°,
∴△BCD为等边三角形,
BD=BC,∠BDC=60°,
∵∠ABD=CAD
∴弧DC=DB
DHBC
BH=CH,∠BOH=BOC
而∠BOC=2BDC=120°,
∴∠BOH=60°,
RtBOH中,∵∠OBH=30°,
OH=OB=2
BH=OH=
BC=2BH=
BD=
故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,等腰的底边轴上,已知,抛物线(其中)经过三点,双曲线(其中)经过点轴,轴,垂足分别为

1)求出的值;当为直角三角形时,请求出的表达式;

2)当为正三角形时,直线平分,求的取值范围;

3)抛物线(其中)有一时刻恰好经过点,且此时抛物线与双曲线(其中)有且只有一个公共点(其中),我们不妨把此时刻的记作,请直接写出抛物线(其中)与双曲线(其中)有一个公共点时的取值范围.(是已知数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于某个函数,若自变量取实数,其函数值恰好也等于时,则称为这个函数的“等量值”.在函数存在“等量值”时,该函数的最大“等量值”与最小“等量值”的差称为这个函数的“等量距离”,特别地,当函数只有一个“等量值”时,规定其“等最距离”0

1)请分别判断函数有没有“等量值”?如果有,直接写出其“等量距离”;

2)已知函数

①若其“等量距离”为0,求的值;

②若,求其“等量距离”的取值范围;

③若“等量距离”,直接写出的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,已知∠ACB90°,∠A30°,BC6D为斜边AB上一点,以CDCB为边作平行四边形CDEB,当AD_____时,平行四边形CDEB为菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点At1)在第一象限,将OA绕点O顺时针旋转45°得到OB,若反比例数yk0)的图象经过点AB,则k_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知.在RtOAB中,∠OAB=90°,∠BOA=30°OA=2,若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内,将RtOAB沿OB折叠后,点A落在第一象限内的点C处.

1)求经过点OCA三点的抛物线的解析式.

2)若点M是抛物线上一点,且位于线段OC的上方,连接MOMC,问:点M位于何处时三角形MOC的面积最大?并求出三角形MOC的最大面积.

3)抛物线上是否存在一点P,使∠OAP=BOC?若存在,请求出此时点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一只拉杆式旅行箱(图1),其侧面示意图如图2所示,已知箱体长AB=50cm,拉杆BC的伸长距离最大时可达35cm,点A,B,C在同一条直线上,在箱体底端装有圆形的滚筒轮⊙A,⊙A与水平地面相切于点D,在拉杆伸长到最大的情况下,当点B距离水平地面34cm时,点C到水平地面的距离CE55cm.AF MN.

1)求⊙A的半径.

2)当人的手自然下垂拉旅行箱时,人感到较为舒服,某人将手自然下垂在C端拉旅行箱时,CE76cm,∠CAF=64°,求此时拉杆BC的伸长距离(结果精确到1cm,参考数据:sin64°≈0.9,cos64°≈0.39,tan64°≈2.1).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,∠C=90°,ADDB,点EAB的中点,DEBC

1)求证:BD平分∠ABC

2)连接EC,若∠A=30°,DC,求EC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为丰富学生的校园生活,准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元。

(1)求购买一个足球、一个篮球各需多少元?

(2)根据学校实际情况,需从体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?

查看答案和解析>>

同步练习册答案