【题目】如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2 , 再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3 , 以此类推…、则正方形OB2015B2016C2016的顶点B2016的坐标是 .
【答案】(21008 , 0)
【解析】解:∵正方形OA1B1C1边长为1,∴OB1= ,
∵正方形OB1B2C2是正方形OA1B1C1的对角线OB1为边,
∴OB2=2,
∴B2点坐标为(0,2),
同理可知OB3=2 ,
∴B3点坐标为(﹣2,2),
同理可知OB4=4,B4点坐标为(﹣4,0),
B5点坐标为(﹣4,﹣4),B6点坐标为(0,﹣8),
B7(8,﹣8),B8(16,0)
B9(16,16),B10(0,32),
由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的 倍,
∵2016÷8=252
∴B2016的纵横坐标符号与点B8的相同,横坐标为正值,纵坐标是0,
∴B2016的坐标为(21008 , 0).
故答案为:(21008 , 0).
首先求出B1、B2、B3、B4、B5、B6、B7、B8、B9的坐标,找出这些坐标的之间的规律,然后根据规律计算出点B2016的坐标.本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的 倍.
科目:初中数学 来源: 题型:
【题目】某校在民族团结宣传活动中,采用了四种宣传形式:A唱歌,B舞蹈,C朗诵,D器乐.全校的每名学生都选择了一种宣传形式参与了活动,小明对同学们选用的宣传形式,进行了随机抽样调查,根据调查统计结果,绘制了如图两种不完整的统计图表:
选项 | 方式 | 百分比 |
A | 唱歌 | 35% |
B | 舞蹈 | a |
C | 朗诵 | 25% |
D | 器乐 | 30% |
请结合统计图表,回答下列问题:
(1)本次调查的学生共△人,a=△ , 并将条形统计图补充完整;
(2)如果该校学生有2000人,请你估计该校喜欢“唱歌”这种宣传形式的学生约有多少人?
(3)学校采用调查方式让每班在A、B、C、D四种宣传形式中,随机抽取两种进行展示,请用树状图或列表法,求某班抽到的两种形式恰好是“唱歌”和“舞蹈”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.
(1)求证:△ABC是等边三角形;
(2)若∠PAC=90°,AB=2 ,求PD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为( )
A.115°
B.120°
C.130°
D.140°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,直线y=﹣ x与反比例函数y= 的图象交于关于原点对称的A,B两点,已知A点的纵坐标是3.
(1)求反比例函数的表达式;
(2)将直线y=﹣ x向上平移后与反比例函数在第二象限内交于点C,如果△ABC的面积为48,求平移后的直线的函数表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用两种方法证明“三角形的外角和等于360°”.如图,
∠BAE、∠CBF、∠ACD是△ABC的三个外角.
求证∠BAE+∠CBF+∠ACD=360°.
请把证法1补充完整,并用不同的方法完成证法2.
(1)证法1:∵ ,
∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°
∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).
∵ ,
∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.
(2)证法2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数y=﹣ x2+bx+c的图象与坐标轴交于A、B、C三点,其中点A的坐标为(0,8),点B的坐标为(﹣4,0).
(1)求该二次函数的表达式及点C的坐标;
(2)点D的坐标为(0,4),点F为该二次函数在第一象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S.
①求S的最大值;
②在点F的运动过程中,当点E落在该二次函数图象上时,请直接写出此时S的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=-x2+(m-1)x+m(m>1)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)点D和点C关于抛物线的对称轴对称,点F在直线AD上方的抛物线上,FG⊥AD于G,FH//x轴交直线AD于H,求△FGH的周长的最大值;
(3)点M是抛物线的顶点,直线l垂直于直线AM,与坐标轴交于P、Q两点,点R在抛物线的对称轴上,得△PQR是以PQ为斜边的等腰直角三角形,求直线l的解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com