精英家教网 > 初中数学 > 题目详情

【题目】在直线L上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4S1+2S2+2S3+S4=(

A. 5 B. 4 C. 6 D. 10

【答案】C

【解析】

试题如图,图中的四边形为正方形,

∴∠ABD=90°AB=DB

∴∠ABC+∠DBE=90°

∵∠ABC+∠CAB=90°

∴∠CAB=∠DBE

△ABC△BDE中,

∴△ABC≌△BDEAAS),

∴AC=BE

∵DE2+BE2=BD2

∴ED2+AC2=BD2

∵S1=AC2S2=DE2BD2=1

∴S1+S2=1

同理可得S2+S3=2S3+S4=3

∴S1+2S2+2S3+S4=1+2+3=6

故选C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线l1y=﹣2x+2x轴于点A,交y轴于点B,直线l2yx+1x轴于点D,交y轴于点C,直线l1l2交于点M

1)点M坐标为_____

2)若点Ey轴上,且BME是以BM为一腰的等腰三角形,则E点坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数y=(x<0)的图象经过点A(﹣2,2),过点A作ABy轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B'在此反比例函数的图象上,则t的值是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在半圆O中,AB是直径,AB=13,点C是半圆O上一点,AC=12,弦AD平分∠BAC,则sinDAB=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰中,边上的中点,点分别是边上的动点,点从顶点沿方向作匀速运动,点从从顶点沿方向同时出发,且它们的运动速度相同,连接

1)求证:

2)判断线段的位置及数量关系,并说明理由.

3)在运动过程中,的面积之和是否为定值?若是,请求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB⊙O的直径,点C⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DCAB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE

1)求证:AC平分∠DAB

2)求证:△PCF是等腰三角形;

3)若∠BEC=30°,求证:以BCBEAC边的三角形为直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有(  )

A. 2个 B. 3个 C. 4个 D. 5个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c和直线y=x+1交于A,B两点,点Ax轴上,点B在直线x=3上,直线x=3x轴交于点C

(1)求抛物线的解析式;

(2)点P从点A出发,以每秒个单位长度的速度沿线段AB向点B运动,点Q从点C出发,以每秒2个单位长度的速度沿线段CA向点A运动,点P,Q同时出发,当其中一点到达终点时,另一个点也随之停止运动,设运动时间为t秒(t>0).以PQ为边作矩形PQNM,使点N在直线x=3上.

①当t为何值时,矩形PQNM的面积最小?并求出最小面积;

②直接写出当t为何值时,恰好有矩形PQNM的顶点落在抛物线上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O是△ABC的外接圆, AD是⊙O的直径,BC的延长线于过点A的直线相交于点E,且∠B=EAC.

(1)求证:AE是⊙O的切线;

(2)过点CCGAD,垂足为F,与AB交于点G,若AGAB=36,tanB=,求DF的值

查看答案和解析>>

同步练习册答案