精英家教网 > 初中数学 > 题目详情

【题目】如图(1),在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,点OAC边上的一点,连接BOAD于点F,OE⊥OBBC边于点E.

(1)试说明:△ABF∽△COE.

(2)如图(2),当OAC边的中点,且时,求的值.

(3)OAC边的中点,时,请直接写出的值.

【答案】详见解析; (3)

【解析】

(1)要求证:ABFCOE.只要证明∠BAF=CABF=COE即可.
(2)作BCH,易证:OEHOFA,根据相似三角形的对应边的比相等,即可得出所求的值.同理可得(3)

(1)证明:∵ADBC

∴∠BAF=C.

OEOB

∴∠ABF=COE.

ABFCOE.

(2)OAC垂线交BCH,OHAB

(1)得∠ABF=COEBAF=C.

∴∠AFB=OEC

∴∠AFO=HEO

而∠BAF=C

∴∠FAO=EHO

OEHOFA

OF:OE=OA:OH

又∵OAC的中点,OHAB.

OHABC的中位线,

OA:OH=2:1,

OF:OE=2:1,

(3)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c(a0)经过点A(3,0),B(﹣1,0),C(0,﹣3).

(1)求该抛物线的解析式;

(2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;

(3)若点Qx轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠ACB90°AB5cmBC4cm,若点P从点A出发,以每秒1cm的速度沿折线ABCA运动,设运动时间为tt0)秒.

1AC   cm

2)若点P恰好在∠ABC的角平分线上,求此时t的值;

3)在运动过程中,当t为何值时,△ACP为等腰三角形(直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,A(21)B(34)C(13),过点(l0)x轴的垂线

(1)作出ABC关于直线的轴对称图形

(2)直接写出A1(______)B1(______)C1(______)

(3)ABC内有一点P(mn),则点P关于直线的对称点P1的坐标为(______)(结果用含mn的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】课间,小刚拿着老师的等腰直角三角板玩,一不小心掉到垂直地面的两个木块之间,如图所示:

1)求证:ADC≌△CEB

2)若测得AD=15cmBE=10cm,求两个木块之间的距离DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.

(1)A、B两种商品的单价分别是多少元?

(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(题文)如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线相交于A(1,),B(4,0)两点.

(1)求出抛物线的解析式;

(2)在坐标轴上是否存在点D,使得△ABD是以线段AB为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;

(3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△BCN、S△PMN满足S△BCN=2S△PMN,求出的值,并求出此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形为菱形,点为对角线上的一个动点,连接并延长交射线于点,连接

求证:

是否存在这样一个菱形,当时,刚好?若存在,求出的度数;若不存在,请说明理由;

,且当为等腰三角形时,求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是边长为10的等边三角形,PAC边上一动点,由AC运动(与AC不重合).

(Ⅰ)如图1,若点QBC边上一动点,与点P同时以相同的速度由CB运动(与CB不重合).求证:BPAQ

(Ⅱ)如图2,若QCB延长线上一动点,与点P同时以相同的速度由BCB延长线方向运动(Q不与B重合),过PPEABE,连接PQABD,在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果发生改变,请说明理由.

查看答案和解析>>

同步练习册答案