精英家教网 > 初中数学 > 题目详情
如图,矩形纸片ABCD,点E是AB上一点,且BE∶EA=5∶3,EC=,把△BCE沿折痕EC向上翻折,若点B恰好落在AD边上,设这个点为F,则(1)AB=     ▲     ,BC=    ▲   ;(2)若⊙O内切于以F、E、B、C为顶点的四边形,则⊙O的面积=  ▲     .
AB=24,BC=30,⊙O的面积=100.(1+1+2分)
(1)求线段的长度问题,题中可先设其长度为k,然后利用三角形相似建立平衡关系,再用勾股定理求解即可.
(2)连接OB,由⊙O内切于以F、E、B、C为顶点的四边形,则BE=EF,BC=CF;再由BE:EA=5:3可以设BE=5x,EA=3x,则FA=4x,CD=8x,又CF=AD,CF2=CD2+DF2,可得CF=10x,DF=6x,则BC=10x;在Rt△EBC中,由勾股定理可求得x的值,再由面积SEBC=SOEB+SOBC求得⊙O半径,求出面积.
解:(1)∵四边形ABCD是矩形
∴∠A=∠B=∠D=90°,BC=AD,AB=CD,
∴∠AFE+∠AEF=90°
∵F在AD上,∠EFC=90°
∴∠AFE+∠DFC=90°
∴∠AEF=∠DFC
∴△AEF∽△DFC
=
∵BE:EA=5:3
设BE=5k,AE=3k
∴AB=DC=8k,
由勾股定理得:AF=4k,
=
∴DF=6k
∴BC=AD=10k
在△EBC中,根据勾股定理得BE2+BC2=EC2
∵CE=15,BE=5k,BC=10k
∴(5k)2+(10k)2=(15)2
∴k=3
∴AB=8k=24,BC=10k=30
(2)连接OB,
由于⊙O内切于以F、E、B、C为顶点的四边形,则BE=EF,BC=CF;
由BE:EA=5:3,设BE=5x,EA=3x,
则FA=4x,CD=8x,又CF=AD,∴CF2=CD2+DF2,即CF2=(8x)2+(CF-4x)2,可得CF=10x,DF=6x,则BC=10x;
在Rt△EBC中,EB2+BC2=EC2,即(5x)2+(10x)2=15 2
解得:x=3,则BE=15,BC=30.
再由SEBC=SOEB+SOBC,则×BE×BC=×BE×r+×BC×r,
解得:r=10;
则⊙O的面积为πr2=100π.
本题考查了矩形的性质,会解决一些简单的翻折问题,能够利用勾股定理求解直角三角形;同时也考查了切线的性质及勾股定理的应用,难度稍大,解题时要理清思路.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,点轴正半轴上一点,两点关于轴对称,过点任作直线交抛物线两点

(1)求证:∠=∠
(2)若点的坐标为(0,1),且∠=60º,试求所有满足条件的直线的函数解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本小题满分8分)如图,一次函数的图象与反比例函数的图象交于两点,与轴交于点,与轴交于点,已知,点的坐标为
(1)求反比例函数的解析式.
(2)求一次函数的解析式.
(3)在轴上存在一点,使得相似,请你求出点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,小正方形的边长均为1,则各图中的三角形(阴影部分)的与△ABC相似的是(     )

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知EF//BC,且AE∶BE=1∶2,若△AEF的面积为4,
则△ABC的面积为________________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(8分)若矩形的一个短边与长边的比值为,(黄金分割数),我们把这样的矩形叫做黄金矩形
(1)      操作:请你在如图15所示的黄金矩形ABCD(AB>AD)中,以短边AD为一边作正方形AEFD。
(2)      探究:在(1)中的四边形EBCF是不是黄金矩形?若是,请予以证明;若不是,请说明理由。
(3)      归纳:通过上述操作及探究,请概括出具体有一般性的结论(不需证明)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

有同一三角形地块的甲、乙两地图,比例尺分别为1:100和1:500,那么甲地图与乙地图表示这一地块的三角形的面积之比是(   )
A.25:1B.5:1C.1:25D.1:5

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知,且,则b=        .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原
点O为位似中心,将△ABC缩小,使变换后得到的△DEF与△ABC对应边的比为1∶3,
则点C变换后对应的点的坐标为
A.(3,2)B.(-3,-2)或(3,2)
C.(2,D.(2,)或(-2,-

查看答案和解析>>

同步练习册答案