精英家教网 > 初中数学 > 题目详情
8.如图,点B、C把$\widehat{AD}$分成三等分,ED是⊙O的切线,过点B、C分别作半径的垂线段,已知∠E=45°,半径OD=1,则图中阴影部分的面积是$\frac{π}{8}$.

分析 根据题意可以求出各个扇形圆心角的度数,然后根据题目中的条件求出阴影部分的面积,本题得以解决.

解答 解:∵点B、C把$\widehat{AD}$分成三等分,ED是⊙O的切线,∠E=45°,
∴∠ODE=90°,∠DOC=45°,
∴∠BOA=∠BOC=∠COD=45°,
∵OD=1,
∴阴影部分的面积是:$\frac{45°×2×π×{1}^{2}}{360}-\frac{1}{2}×(1×\frac{\sqrt{2}}{2})^{2}×2$+$\frac{1}{2}×1×1-\frac{45×π×{1}^{2}}{360}$=$\frac{π}{8}$,
故答案为:$\frac{π}{8}$.

点评 本题考查扇形面积的计算、切线的性质,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.(1)问题背景:
如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC,CD上的点且∠EAF=60°,探究图中线段BE、EF、FD之间的数量关系.
小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+FD;
(2)探索延伸:
如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=$\frac{1}{2}$∠BAD,上述结论是仍然成立(填“是”或“否”);
结论应用:
如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以45海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以60海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两地分别到达E、F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.
能力提高:
如图4,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,则MN的长为$\sqrt{10}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图所示:数轴上点A所表示的数为a,则a的值是(  )
A.$\sqrt{5}$+1B.-$\sqrt{5}$+1C.$\sqrt{5}$D.$\sqrt{5}$-1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.下列函数的解析式中是一次函数的是(  )
A.y=$\frac{1}{-x}$B.y=$\frac{1}{5}$x+1C.y=x2+1D.y=$\sqrt{x}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.解下列不等式组.
(1)$\left\{\begin{array}{l}{\frac{2x}{3}-1≤\frac{3x}{4}}\\{3-4x>1}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{20%x-2(x-1)>11}\\{2(x-3)≥3x-1}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知函数y=-3x2-2x+2,当自变量x在下列取值范围内时,分别求函数的最大值或最小值,并求当函数取最大(小)值时所对应的自变量x的值:
(1)x≤-1;
(2)x≥1;
(3)-1≤x≤1;
(4)-2≤x≤3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.【问题】(1)如图①,边长为3cm的两个相同的正方形纸片重叠放置,重叠部分为正方形,两个正方形两条边的交点分别为点A,C,当CD=1cm时,阴影部分的面积为5cm2
(2题(1)中,设两个正方形的边长都是n(cm)(n>1),当CD=1cm时(图②),阴影部分的面积为n2-(n-1)2cm2(用n来表示).
【应用】如图③,12×12cm的方格纸中,每个小正方形的边长都是1cm,现用边长为n(cm)(n是正整数)的大小相同的黑白两种正方形纸片沿对角线方向重叠放置盖住方格纸,重叠部分为正方形且边长都是(n-1)cm(2≤n≤12),第一张纸片放置方格纸的左上角,盖住的面积为n2(cm2),最后一张纸片放置方格纸的右下角,需要的正方形纸片的总数为y(张).
(1)当n=2时,y=11;
(2)当n=3时,y=10;
(3)求y与n之间的函数关系式.
【探究】方格纸中,被盖住的面积为S1,未盖住的面积为S2,是否存在使S1=S2的n的值?若存在,求n的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.(1)x-4≥2(x+2);
(2)$\frac{-(x+1)}{2}$<3
(3)$\left\{\begin{array}{l}{2x+3>5}\\{3x-2≤4}\end{array}\right.$
(4)$\left\{\begin{array}{l}{5x-1>3(x+1)}\\{\frac{x-2}{2}≤7-\frac{3x}{2}}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.计算:(2a-b)2-(8a3b-4a2b2)÷2ab.

查看答案和解析>>

同步练习册答案