【题目】如图,已知抛物线y=x2﹣2x﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,该抛物线顶点为D,对称轴交x轴于点H.
(1)求A,B两点的坐标;
(2)设点P在x轴下方的抛物线上,当∠ABP=∠CDB时,求出点P的坐标;
(3)以OB为边最第四象限内作等边△OBM.设点E为x轴的正半轴上一动点(OE>OH),连接ME,把线段ME绕点M顺时针旋转60°得MF,求线段DF的长的最小值.
【答案】(1)A(﹣1,0),B(3,0);(2)P(2,﹣3);(3)线段DF的长的最小值存在,最小值是2+.
【解析】
试题分析:(1)令y=0,求得关于x的方程x2﹣2x﹣3=0的解即为点A、B的横坐标;
(2)设P(x,x2﹣2x﹣3),根据抛物线解析式求得点D的坐标为D(1,﹣4);结合坐标与图形的性质求得线段CD=,CB=3,BD=2;所以根据勾股定理的逆定理推知∠BCD=90°,则易推知相似三角形△BCD∽△PNB,由该相似三角形的对应边成比例来求x的值,易得点P的坐标;
(3)正确做出等边△OBM和线段ME所对应的旋转线段MF,如图2.过点B,F作直线交对称轴于点G.构建全等三角形:△EOM≌△FBM,由该全等三角形的性质和图形中相关角间的和差关系得到:
∠OBF=120°为定值,即BF所在直线为定直线.过D点作DK⊥BF,K为垂足线段DF的长的最小值即为DK的长度.
解:(1)令y=0,得x2﹣2x﹣3=0,
解得x1=﹣1,x2=3,
∴A(﹣1,0),B(3,0)
(2)设P(x,x2﹣2x﹣3),
如图1,过点P作PN⊥x轴,垂足为N.
连接BP,设∠NBP=∠CDB.
令x=0,得y=x2﹣2x﹣3=﹣3,
∴C(0,﹣3)
∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴D(1,﹣4).
由勾股定理,得CD=,CB=3,BD=2.
∴BD2=BC2+CD2,
∴∠BCD=90°.
∵∠BCD=∠PNB=90°,∠NBP=∠CDB.
∴△BCD∽△PNB.
∴=,
=,即x2﹣5x+6=0,
解得x1=2,x2=3(不合题意,舍去).
∴当x=2时,y=﹣3
∴P(2,﹣3);
(3)正确做出等边△OBM和线段ME所对应的旋转线段MF,如图2.
过点B,F作直线交对称轴于点G.
由题意可得:
,
∴△EOM≌△FBM,
∴∠MBF=∠MOB=60°.
∵∠OBF=∠OBM+∠MBF=60°+60°=120°为定值,
∴BF所在直线为定直线.
过D点作DK⊥BF,K为垂足.
在Rt△BGH中,∠HBG=180°﹣120°=60°,
∴∠HGB=30°.
∵HB=3,
∴BG=4,HG=2.
∵D(1,﹣4),
∴DH=4,
∴DG=2+4.
在Rt△DGK中,∠DGK=30°.
∴DK=DG=2+.
∵当点E与点H重合时,这时BF=OH=1,
则GF=4+1=5.
而GK=DK=3+2>5,即点K在点F运动的路径上,
所以线段DF的长的最小值存在,最小值是2+.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+3x+4与x轴交于A、B两点,与y轴交于点C,点D在抛物线上且横坐标为3.
(1)求A、B、C、D的坐标;
(2)求∠BCD的度数;
(3)求tan∠DBC的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,BC=1,AC=.
(1)以点B为旋转中心,将△ABC沿逆时针方向旋转90°得到△A′BC′,请画出变换后的图形;
(2)求点A和点A′之间的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y1=x2+2x+m﹣5.
(1)如果该二次函数的图象与x轴有两个交点,求m的取值范围;
(2)如果该二次函数的图象与x轴交于A、B两点,与y轴交于点C,且点B的坐标为(1,0),求它的表达式和点C的坐标;
(3)如果一次函数y2=px+q的图象经过点A、C,请根据图象直接写出y2<y1时,x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=3,BC=4,动点P以每秒一个单位的速度从点A出发,沿对角线AC向点C移动,同时动点Q以相同的速度从点C出发,沿边CB向点B移动.设P,Q两点移动时间为t秒(0≤t≤4).
(1)用含t的代数式表示线段PC的长是 ;
(2)当△PCQ为等腰三角形时,求t的值;
(3)以BQ为直径的圆交PQ于点M,当M为PQ的中点时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列各式从左边到右边的变形是因式分解的是( )
A、(a+1)(a-1)=a2-1
B、a2-6a+9=(a-3)2
C、x2+2x+1=x(x+2)+1
D、-18x4y3=-6x2y2·3x2y
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=3,BC=4,动点P以每秒一个单位的速度从点A出发,沿对角线AC向点C移动,同时动点Q以相同的速度从点C出发,沿边CB向点B移动.设P,Q两点移动时间为t秒(0≤t≤4).
(1)用含t的代数式表示线段PC的长是 ;
(2)当△PCQ为等腰三角形时,求t的值;
(3)以BQ为直径的圆交PQ于点M,当M为PQ的中点时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1所示,四边形AEFG与四边形ABCD是正方形,其中G、A、B三点在同一直线上.连接DG、BE.完成下面问题:
(1)求证:BE=DG;
(2)如图2,将正方形AEFG绕点A逆时针转过一定角度时,小明发现:BE=DG且BE⊥DG,请你帮助小明证明这两个结论;
(3)如图3,小明还发现:在旋转过程中,分别连接EG、GB、BD、DE的中点,得到的四边形MNPQ是正方形.若AB=a,AE=b其中a>b,你能帮小明求出正方形MNPQ的面积的范围吗?写出过程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com