【题目】已知:如图,在△ABC中,BC=AC,以BC为直径的 O与边AB相交于点D,DE⊥AC,垂足为点E.
(1)求证:点D是AB的中点;
(2)判断DE与 O的位置关系,并证明你的结论;
(3)若 O的直径为3,cosB= ,求DE的长.
【答案】
(1)解:证明:连结CD,如图,
∵BC为直径,
∴∠BDC=90°,
∴CD⊥AB,
∵AC=BC,
∴AD=BD,
即点D是AB的中点;
(2)解:DE与⊙O相切.理由如下:
连结OD,
∵AD=BD,OC=OB,
∴OD为△ABC的中位线,
∴OD∥AC,
而DE⊥AC,
∴DE⊥OD,
∴DE为⊙O的切线.
(3)解:连结CD,如图,
∵BC为直径,
∴∠BDC=90°,
在Rt△BDC中,∵cosB= ,
∴BD= BC= ×3=1,
∴AD=BD=1,
在Rt△ADE中,∵cosA=cosB= =
∴AE= AD= ,
∴DE= = = .
【解析】(1)连结OD,如图,由OD=OB得到∠ODB=∠B,由CA=CB得到∠A=∠B,则∠ODB=∠A,则可判断OD∥AC,易得BD=AD,即点D是AB的中点;(2)由于OD∥AC,DE⊥AC,所以DE⊥OD,于是根据切线的判定定理可得DE为⊙O的切线;(3)连结CD,如图,根据圆周角定理得到∠BDC=90°,则在Rt△BDC中,利用余弦定义可计算出BD= BC=1,所以AD=BD=1,接着在Rt△ADE中,利用余弦定义可计算出AE= AD= ,然后根据勾股定理可计算出DE的长.
【考点精析】通过灵活运用切线的判定定理,掌握切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线即可以解答此题.
科目:初中数学 来源: 题型:
【题目】如图,已知在平行四边形ABCD中,点E是CD上一点,且DE=2,CE=3,射线AE与射线BC相交于点F;
(1)求 的值;
(2)如果 = , = ,求向量 ;(用向量 、 表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解高邮市6000名九年级学生英语口语考试成绩的情况,从中随机抽取了部分学生的成绩(满分30分,得分均为整数),制成下表:
分数段(x分) | x≤10 | 11≤x≤15 | 16≤x≤20 | 21≤x≤25 | 26≤x≤30 |
人 数 | 10 | 15 | 35 | 112 | 128 |
(1)本次抽样调查共抽取了名学生;
(2)若用扇形统计图表示统计结果,则分数段为x≤10的人数所对应扇形的圆心角为°;
(3)学生英语口语考试成绩的众数落在11≤x≤15的分数段内;(填“会”或“不会”)
(4)若将26分以上(含26)定为优秀,请估计该区九年级考生成绩为优秀的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中学生上学带手机的现象越来越受到社会的关注,为此媒体记者随机调查了某校若干名学生上学带手机的目的,分为四种类型:A接听电话;B收发短信;C查阅资料;D游戏聊天.并将调查结果绘制成图1和图2的统计图(不完整),请根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了名学生;
(2)将图1、图2补充完整;
(3)现有4名学生,其中A类两名,B类两名,从中任选2名学生,求这两名学生为同一类型的概率(用列表法或树状图法).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,边长为4的正方形ABCD内接于点O,点E是 上的一动点(不与A、B重合),点F是 上的一点,连接OE、OF,分别与AB、BC交于点G,H,且∠EOF=90°,有以下结论,其中正确的个数是( ). ① = ; ②△OGH是等腰三角形; ③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+ .
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x轴、y轴上,反比例函数y= (x>0)的图像经过点D,且与边BC交于点E,则点E的坐标为.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD和正方形DEFG中,点G在CD上,DE=2,将正方形DEFG绕点D顺时针旋转60°,得到正方形DE′F′G′,此时点G′在AC上,连接CE′,则CE′+CG′=( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元. 设在同一家复印店一次复印文件的页数为x(x为非负整数).
(1)根据题意,填写下表:
一次复印页数(页) | 5 | 10 | 20 | 30 | … |
甲复印店收费(元) | 0.5 | 2 | … | ||
乙复印店收费(元) | 0.6 | 2.4 | … |
(2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1 , y2关于x的函数关系式;
(3)当x>70时,顾客在哪家复印店复印花费少?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+4(a≠0)与x轴交于点A和点B(2,0),与y轴交于点C,点D是抛物线在第一象限的点.
(1)当△ABD的面积为4时,
①求点D的坐标;
②联结OD,点M是抛物线上的点,且∠MDO=∠BOD,求点M的坐标;
(2)直线BD、AD分别与y轴交于点E、F,那么OE+OF的值是否变化,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com