精英家教网 > 初中数学 > 题目详情

【题目】已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.且△OCP与△PDA的面积比为1:4
(1)如图1,已知折痕与边BC交于点O,连结AP、OP、OA.
①求证:△OCP∽△PDA;
②求边AB的长;

(2)如图2,连结AP、BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度.

【答案】
(1)

解:①如图1中,∵四边形ABCD是矩形,

∴∠C=∠D=90°,

∴∠DPA+∠DAP=90°,

∵由折叠可得∠APO=∠B=90°,

∴∠DPA+∠CPO=90°,

∴∠DAP=∠CPO,

又∵∠D=∠C,

∴△OCP∽△PDA;

②如图1,∵△OCP与△PDA的面积比为1:4,

= = =

∴CP= AD=4,

设OP=x,则CO=8﹣x,

在Rt△PCO中,∠C=90°,

由勾股定理得 x2=(8﹣x)2+42

解得:x=5,

∴AB=AP=2OP=10,

∴边AB的长为10


(2)

解:结论:线段EF的长度不发生变化.EF=2

理由:如图2中,作MQ∥AN,交PB于点Q,

∵AP=AB,MQ∥AN,

∴∠APB=∠ABP=∠MQP.

∴MP=MQ,

∵BN=PM,

∴BN=QM.

∵MP=MQ,ME⊥PQ,

∴EQ= PQ.

∵MQ∥AN,

∴∠QMF=∠BNF,

在△MFQ和△NFB中,

∴△MFQ≌△NFB(AAS),

∴QF=FB,

∴QF= QB,

∴EF=EQ+QF= PQ+ QB= PB,

由(1)中的结论可得:PC=4,BC=8,∠C=90°,

∴PB= =4

∴EF= PB=2

∴当点M、N在移动过程中,线段EF的长度不变,它的长度为2


【解析】(1)①只要证明∠PAD=∠CPO,由∠D=∠C=90°,即可证出△OCP∽△PDA;②根据△OCP与△PDA的面积比为1:4,得出CP= AD=4,设OP=x,则CO=8﹣x,由勾股定理得 x2=(8﹣x)2+42 , 求出x,最后根据AB=2OP即可求出边AB的长;(2)作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据ME⊥PQ,得出EQ= PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF= QB,再求出EF= PB,由(1)中的结论求出PB,即可判断.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,抛物线y=﹣ x2+bx+c与x轴交与点A(﹣3,0),点B(9,0),与y轴交与点C,顶点为D,连接AD、DB,点P为线段AD上一动点.

(1)求抛物线的解析式;
(2)过点P作BD的平行线,交AB于点Q,连接DQ,设AQ=m,△PDQ的面积为S,求S关于m的函数解析式,以及S的最大值;
(3)如图2,抛物线对称轴与x轴交与点G,E为OG的中点,F为点C关于DG对称的对称点,过点P分别作直线EF、DG的垂线,垂足为M、N,连接MN,当△PMN为等腰三角形时,求此时EM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,两圆圆心相同,大圆的弦AB与小圆相切,若图中阴影部分的面积是16π,则AB的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].
(1)如图①,对△ABC作变换[60°, ]得△AB′C′,则SAB′C′:SABC=;直线BC与直线B′C′所夹的锐角为度;
(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB′C′,使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;
(3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=1,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,求θ和n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子水平放置在离B(树底)8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=3.2米,观察者目高CD=1.6米,求树AB的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE= AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据题意解答
(1)计算:|﹣ |+(π﹣3)0+( 1﹣2cos45°
(2)若关于x的一元二次方程x2+(k+3)x+k=0的一个根是﹣2,求方程的另一个根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y= x+2与双曲线相交于点A(m,3),与x轴交于点C.
(1)求双曲线解析式;
(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程与方程组
(1)解方程: + =4.
(2)解不等式组:

查看答案和解析>>

同步练习册答案