精英家教网 > 初中数学 > 题目详情

【题目】如图1,在平面直角坐标系中,抛物线y=﹣ x2+bx+c与x轴交与点A(﹣3,0),点B(9,0),与y轴交与点C,顶点为D,连接AD、DB,点P为线段AD上一动点.

(1)求抛物线的解析式;
(2)过点P作BD的平行线,交AB于点Q,连接DQ,设AQ=m,△PDQ的面积为S,求S关于m的函数解析式,以及S的最大值;
(3)如图2,抛物线对称轴与x轴交与点G,E为OG的中点,F为点C关于DG对称的对称点,过点P分别作直线EF、DG的垂线,垂足为M、N,连接MN,当△PMN为等腰三角形时,求此时EM的长.

【答案】
(1)

解:∵a=﹣ ,抛物线与x轴交与点A(﹣3,0),点B(9,0),

∴可以假设抛物线解析式为y=﹣ (x+3)(x﹣9)=﹣ x2+ x+6,

∴抛物线解析式为y=﹣ x2+ x+6


(2)

解:∵y=﹣ x2+ x+6=﹣ (x﹣3)2+8,

∴顶点D坐标(3,8),

∵AD=DB=10,

∴∠DAB=∠DBA,

∵PQ∥BD,

∴∠PQA=∠DBA,

∴∠PAQ=∠PQA,

∴PA=PQ,

∴△PAQ为等腰三角形,

作PH⊥AQ于H,则AH=HQ= (如图1中),

∴tan∠DAB= =

∴PH= m,

∴S=SADQ﹣SAPQ= m8﹣ m m=﹣ m2+4m=﹣ (m﹣6)2+12,

∴当m=6时,S最大值=12


(3)

解:∵E( ,0),F(6,6),

∴直线EF解析式为y= x﹣2,直线AD解析式为y= x+4,

∴EF∥AD,作EL⊥AD于L,(如图2中)

∵AE= ,sin∠DAB=

∴LE= × = =PM,

①PM=PN= 时,

∴xP=3﹣ =﹣ ,yP=﹣ × +4=

∴P(﹣ ),

∴直线PM解析式为y=﹣ x+

,解得

∴点M(

∴EM= =

②NP=NM时,设直线EF与对称轴交于点K,K(3,2),

此时点N在PM的垂直平分线上,DN=NK,

∴N(3,5),P( ,5),

∴直线PM的解析式为y=﹣ x+

解得

∴M( ),

∴EM= =

③PM=MN时,cos∠MPN= =

∴PN= ,由此可得P(﹣ ),

∴直线PM解析式为y=﹣ x﹣

解得

∴M( ,﹣ ),

∴EM= =

综上所述,EM=


【解析】(1)可以假设抛物线解析式为y=﹣ (x+3)(x﹣9),展开化简即可.(2)作PH⊥AQ于H,则AH=HQ= (如图1中),根据S=SADQ﹣SAPQ构建二次函数,利用二次函数的性质即可解决问题.(3)分三种情形讨论①PM=PN,②NP=NM,③MN=MP,分别求出直线PM的解析式,利用方程组求出点M坐标即可解决问题.
【考点精析】本题主要考查了二次函数的图象和二次函数的性质的相关知识点,需要掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲乙两人进行射击训练,两人分别射击12次,如图分别统计了两人的射击成绩,已知甲射击成绩的方差S2= ,平均成绩 =8.5.

(1)根据图上信息,估计乙射击成绩不少于9环的概率是多少?
(2)求乙射击的平均成绩的方差,并据此比较甲乙的射击“水平”.
S2= [(x12+(x22…(xn2].

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣x+3与x轴、y轴分别相交于点B、C,经过B、C两点的抛物线y=ax2+bx+c与x轴的另一个交点为A,顶点为P,且对称轴为直线x=2.

(1)求该抛物线的解析式;
(2)连接PB、PC,求△PBC的面积;
(3)连接AC,在x轴上是否存在一点Q,使得以点P,B,Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.

(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.
①求证:△AGE≌△AFE;
②若BE=2,DF=3,求AH的长.
(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为4的正方形ABCD内接于点O,点E是 上的一动点(不与A、B重合),点F是 上的一点,连接OE、OF,分别与AB、BC交于点G,H,且∠EOF=90°,有以下结论: ① =
②△OGH是等腰三角形;
③四边形OGBH的面积随着点E位置的变化而变化;
④△GBH周长的最小值为4+
其中正确的是(把你认为正确结论的序号都填上).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF= ∠CAB.
(1)求证:直线BF是⊙O的切线;
(2)若AB=5,sin∠CBF= ,求BC和BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列方程
(1)x2+x﹣1=0
(2)x(x﹣2)+x﹣2=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,以点C为圆心5cm为半径的圆与直线AB的位置关系是(
A.相交
B.相切
C.相离
D.无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.且△OCP与△PDA的面积比为1:4
(1)如图1,已知折痕与边BC交于点O,连结AP、OP、OA.
①求证:△OCP∽△PDA;
②求边AB的长;

(2)如图2,连结AP、BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度.

查看答案和解析>>

同步练习册答案