精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF= ∠CAB.
(1)求证:直线BF是⊙O的切线;
(2)若AB=5,sin∠CBF= ,求BC和BF的长.

【答案】
(1)证明:连接AE,

∵AB是⊙O的直径,

∴∠AEB=90°,

∴∠1+∠2=90°.

∵AB=AC,

∴∠1= ∠CAB.

∵∠CBF= ∠CAB,

∴∠1=∠CBF

∴∠CBF+∠2=90°

即∠ABF=90°

∵AB是⊙O的直径,

∴直线BF是⊙O的切线


(2)解:过点C作CG⊥AB于G.

∵sin∠CBF= ,∠1=∠CBF,

∴sin∠1=

∵在Rt△AEB中,∠AEB=90°,AB=5,

∴BE=ABsin∠1=

∵AB=AC,∠AEB=90°,

∴BC=2BE=2

在Rt△ABE中,由勾股定理得AE= =2

∴sin∠2= = = ,cos∠2= = =

在Rt△CBG中,可求得GC=4,GB=2,

∴AG=3,

∵GC∥BF,

∴△AGC∽△ABF,

∴BF= =


【解析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABF=90°.(2)利用已知条件证得△AGC∽△ABF,利用比例式求得线段的长即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】函数y=k(x﹣k)与y=kx2 , y= (k≠0),在同一坐标系上的图象正确的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣ x2+ x+ 与x轴交于A,B两点,与y轴交于点C.若点P是线段AC上方的抛物线上一动点,当△ACP的面积取得最大值时,点P的坐标是(

A.(4,3)
B.(5,
C.(4,
D.(5,3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ= ,那么当点P运动一周时,点Q运动的总路程为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,抛物线y=﹣ x2+bx+c与x轴交与点A(﹣3,0),点B(9,0),与y轴交与点C,顶点为D,连接AD、DB,点P为线段AD上一动点.

(1)求抛物线的解析式;
(2)过点P作BD的平行线,交AB于点Q,连接DQ,设AQ=m,△PDQ的面积为S,求S关于m的函数解析式,以及S的最大值;
(3)如图2,抛物线对称轴与x轴交与点G,E为OG的中点,F为点C关于DG对称的对称点,过点P分别作直线EF、DG的垂线,垂足为M、N,连接MN,当△PMN为等腰三角形时,求此时EM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,AB=2,点C在⊙O上,∠CAB=30°,D为 的中点,P是直径AB上一动点,则PC+PD的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=﹣ x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).

(1)求抛物线的解析式及它的对称轴方程;
(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;
(3)试判断△AOC与△COB是否相似?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC内接于⊙O,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出∠BAC的平分线(保留作图痕迹,不写作法).
(1)如图1,P是BC边的中点;
(2)如图2,直线l与⊙O相切于点P,且l∥BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE= AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是(填序号)

查看答案和解析>>

同步练习册答案