【题目】如图,已知抛物线y=﹣ x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).
(1)求抛物线的解析式及它的对称轴方程;
(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;
(3)试判断△AOC与△COB是否相似?并说明理由.
【答案】
(1)
解:∵抛物线y=﹣ x2+bx+4的图象经过点A(﹣2,0),
∴﹣ ×(﹣2)2+b×(﹣2)+4=0,解得b= ,
∴抛物线解析式为 y=﹣ x2+ x+4,
又∵y=﹣ x2+ x+4=﹣ (x﹣3)2+ ,
∴对称轴方程为x=3
(2)
解:在y=﹣ x2+ x+4中,令x=0,得y=4,
∴C(0,4),
令y=0,即﹣ x2+ x+4=0,整理得x2﹣6x﹣16=0,解得x=8或x=﹣2,
∴A(﹣2,0),B(8,0),
设直线BC的解析式为y=kx+b,
把B(8,0),C(0,4)的坐标分别代入解析式 ,解得 ,
∴直线BC的解析式为y=﹣ x+4
(3)
解:△AOC∽△COB成立.
理由如下:
在△AOC与△COD中,
∵OA=2,OC=4,OB=8,
∴ = ,
又∵∠AOC=∠BOC=90°,
∴△AOC∽△COB.
【解析】(1)把A点坐标代入抛物线解析式可求得b的值,则可求得抛物线解析式及其对称轴方程;(2)由抛物线解析式可求得A、B、C的坐标,根据待定系数法可求得直线BC的解析式;(3)由A、B、C的坐标可求得OA、OC、OB的长,根据相似三角形的判定可证明△AOC∽△COB.
【考点精析】掌握二次函数的图象和二次函数的性质是解答本题的根本,需要知道二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.
科目:初中数学 来源: 题型:
【题目】某车间20名工人日加工零件数如表所示:
日加工零件数 | 4 | 5 | 6 | 7 | 8 |
人数 | 2 | 6 | 5 | 4 | 3 |
这些工人日加工零件数的众数、中位数、平均数分别是( )
A.5、6、5
B.5、5、6
C.6、5、6
D.5、6、6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.
(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.
①求证:△AGE≌△AFE;
②若BE=2,DF=3,求AH的长.
(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF= ∠CAB.
(1)求证:直线BF是⊙O的切线;
(2)若AB=5,sin∠CBF= ,求BC和BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系xOy中,△ABC的三个顶点坐标分别为A(﹣4,1)、B(﹣1,1)、C(﹣4,3).
(1)画出Rt△ABC关于原点O成中心对称的图形Rt△A1B1C1;
(2)若Rt△ABC与Rt△A2BC2关于点B中心对称,则点A2的坐标为、C2的坐标为
(3)求点A绕点B旋转180°到点A2时,点A在运动过程中经过的路程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,以点C为圆心5cm为半径的圆与直线AB的位置关系是( )
A.相交
B.相切
C.相离
D.无法确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2﹣2x+3的图象与x轴交于A.B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.
(1)求A,B,C,D的坐标;
(2)判断以点A,C,D为顶点的三角形的形状,并说明理由;
(3)点M( m,0)(﹣3<m<﹣1)为线段AB上一点,过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,得矩形PQNM,当矩形PQMN的周长最大时,m的值是多少?并直接写出此时△AEM的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地区为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费.为更好地决策,自来水公司随机抽取部分用户的用水量数据,并绘制了如下不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解答下列问题:
(1)此次调查抽取了多少用户的用水量数据?
(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数;
(3)如果自来水公司将基本用水量定为每户25吨,那么该地区20万用户中约有多少用户的用水全部享受基本价格?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com