精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,四边形OABC四个顶点的坐标分别为O(0,0),A(3,0),B(4,2),C(1,2).将四边形OABC绕点O顺时针旋转90°后,点A、B、C分别落在点A、B、C处.

(1)请你在所给的直角坐标系中画出旋转后的四边形OABC

(2)点C旋转到点C所经过的弧的半径是 ,点C经过的路线长是

【答案】π

【解析】

试题分析:(1)根据网格结构找出点A、B、C的对应点A、B、C的位置,然后顺次连接即可;

(2)先利用勾股定理求出OC的长度,再根据弧长的计算公式列式进行计算即可得解.

试题解析:(1)如图所示,四边形OABC即为所求作的图形;

(2)根据勾股定理,OC==

C经过的路线长==π

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?

问题探究:不妨假设能搭成种不同的等腰三角形,为探究之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.

探究一:

1)用3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

此时,显然能搭成一种等腰三角形。所以,当时,

2)用4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形

所以,当时,

3)用5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形

若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形

所以,当时,

4)用6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形

若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形

所以,当时,

综上所述,可得表


3

4]

5

6


1

0

1

1

探究二:

1)用7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?

(仿照上述探究方法,写出解答过程,并把结果填在表中)

2)分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三

角形?(只需把结果填在表中)


7

8

9

10






你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,……

解决问题:用根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?

(设分别等于,其中是整数,把结果填在表中)











问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程)其中面积最大的等腰三角形每个腰用了__________________根木棒。(只填结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2010年5月1日至2010年10月31日期间在上海举行的世界博览会总投资约450亿元人民币,其中“450亿”用科学记数法表示为( )元.
A.4.5×1010
B.4.5×109
C.4.5×108
D.0.45×109

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知|ab﹣2|+(b﹣1)2=0
(1)求a,b的值;
(2)求b2004+(﹣b)2005的值;
(3)求 + + +…+ 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:关于x的方程:mx2(3m1)x+2m2=0.

(1)求证:无论m取何值时,方程恒有实数根;

(2)若关于x的二次函数y=mx2(3m1)x+2m2的图象与x轴两交点间的距离为2时,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图:抛物线y=x21与x轴交于A、B两点,与y轴交于点C.

(1)求A、B、C三点的坐标.

(2)过点A作APCB交抛物线于点P,求四边形ACBP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果a、b互为倒数,c、d互为相反数,且m=﹣1,则代数式2ab﹣(c+d)+m2=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2+bx+4顶点在x轴上,则b=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:
(1)16+(﹣25)+24+(﹣35)
(2)(﹣ )×(﹣1 )÷(﹣2
(3)23×(﹣5)﹣(﹣3)÷
(4)|﹣10|+|(﹣4)2﹣(1﹣32)×2|

查看答案和解析>>

同步练习册答案