精英家教网 > 初中数学 > 题目详情
在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F。
(1)在图1中证明CE=CF;
(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;
(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数。
解:(1)如图1,
∵AF平分∠BAD,
∴∠BAF=∠DAF,
∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,
∴∠DAF=∠CEF,∠BAF=∠F,
∴∠CEF=∠F,
∴CE=CF;
(2)∠BDG=45°;
(3)分别连结GB、GE、GC(如图2)
∵AB//DC,∠ABC=120°,
∴∠ECF=∠ABC=120°,
∵FG//CE且FG=CE,
∴四边形CEGF是平行四边形,
由(1)得CE=CF,
∴□CEGF是菱形,
∴EG=EC,∠GCF=∠GCE=∠ECF=60°,
∴△ECG是等边三角形,
∴EG=CG①
∠GEC=∠EGC=60°,
∴∠GEC=∠GCF,
∴∠BEG=∠DCG②
由AD//BC及AF平分∠BAD可得∠BAE=∠AEB,
∴AB=BE,
在□ ABCD中,AB=DC
∴BE=DC③
由①②③得△BEG ≌△DCG,
∴BG=DG,∠1=∠2,
∴∠BGD=∠1+∠3=∠2+∠3=∠EGC=60°,
∴∠BDG=(180°-∠BGD)=60°。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平行四边形ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F.试判断AF与CE是否相等,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、已知如图,在平行四边形ABCD中,BN=DM,BE=DF.求证:四边形MENF是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•鞍山一模)在平行四边形ABCD中,∠DAB=60°,点E是AD的中点,点O是AB边上一点,且AO=AE,过点E作直线HF交DC于点H,交BA的延长线于F,以OE所在直线为对称轴,△FEO经轴对称变换后得到△F′EO,直线EF′交直线DC于点M.
(1)求证:AD∥OF′;
(2)若M点在点H右侧,OA=4,求DH•DM的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,AE⊥AD交BD于点E,CF⊥BC交BD于点F.求证:BE=DF.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,∠B的平分线交AD于E,AE=10,ED=4,那么平行四边形ABCD的周长是
48
48

查看答案和解析>>

同步练习册答案