【题目】如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点点M不与B,C重合,,CN与AB交于点N,连接OM,ON,下列五个结论:≌;≌;∽;;若,则的最小值是,其中正确结论的个数是
A. 2 B. 3 C. 4 D. 5
【答案】D
【解析】
根据正方形的性质,可判定△CNB≌△DMC, △OCM≌△OBN, △CON≌△DOM, △OMN∽△OAD,根据全等三角形的性质以及勾股定理可进行求解.
因为正方形ABCD中,CD=BC, ∠BCD=90°,
所以∠BCN+∠DCN=90°,
因为CN⊥DM,
所以∠CDM+∠DCN=90°,
所以∠BCN=∠CDM,
又因为∠CBN=∠DCM=90°,
所以△CNB≌△DMC,故①正确,
根据△CNB≌△DMC,可得CM=BN,
又因为∠OCM=∠OBN=45°,OC=OB,
所以△OCM≌△OBN,
所以OM=ON, ∠COM=∠BON,
所以∠DOC+∠COM=∠COB+∠BPN,即∠DOM=∠CON,
又因为DO=CO,
所以△OCN≌△DOM,故②正确,
因为∠BON+∠BOM=∠COM+∠BOM=90°,
所以∠MON=90°,即△MON是等腰直角三角形,
又因为△AOD是等腰直角三角形,
所以△OMN∽△OAD,故③正确,
因为AB=BC,CM=BN,
所以BM=AN,
又因为Rt△BMN中,BM2+BN2=MN2,
所以AN2+CM2=MN2,故④正确,
△OCM≌△OBN,
所以四边形BMON的面积=△BOC的面积=1,即四边形BMON的面积是定值1,
当△MNB的面积最大时, △MNO的面积最小,
设BN=x=CM,则BM=2-x,
所以△MNB的面积=,
当x=1时, △MNB的面积有最大值
此时△OMN的面积最小值是,故⑤正确,
故选D.
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AM,CN分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AMCN为菱形的是( )
A.AM=AN B.MN⊥AC
C.MN是∠AMC的平分线 D.∠BAD=120°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在真角坐标系中,矩形0ABC的顶点A,C在坐标轴上,点B(4,2);过点D(0,3)和E(6,0)的直线分别与AB、BC交于点M、N.
(1)求直线DE的函数表达式和点M,N的坐标;
(2)若函数y=(k≠0,k为常数)经过点M,求该函数的表达式,并判定点N是否在该函数的图象上:
(3)求△OMN的面积S;
(4)若函教y=(k≠0,k为常数)的图象与△BMN没有交点,清楚直接写出k的取值范圈,不需解答过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数y=(2m+3)x+m-1,
(1)若函数图象经过原点,求m的值;
(2)若函数图象在y轴上的截距为-3,求m的值;
(3)若该函数的值y随自变量x的增大而减小,求m的取值范围;
(4)该函数图象不经过第二象限,求m的取值范围;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF;其中正确的是( )
A.①②③B.①③④C.①②④D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某县某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下型与型两种板材.如图甲所示.(单位)
(1)列出方程(组),求出图甲中与的值;
(2)在试生产阶段,若将625张标准板材用裁法一裁剪,125张标准板材用裁法二裁剪,再将得到的型与型板材做侧面和底面,刚好可以做成图乙的竖式与横式两种无盖礼品盒.求可以做竖式与横式两种无盖礼品盒各多少个?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,OA为半径的圆分别交AB,AC于点E,D,在BC的延长线上取点F,使得BF=EF,EF与AC交于点G.
(1)试判断直线EF与⊙O的位置关系,并说明理由;
(2)若OA=2,∠A=30°,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为加大环境保护力度,某市在郊区新建了、两个垃圾处理厂来处理甲、乙两个垃圾中转站的垃圾.已知甲中转站每日要输出100吨垃圾,乙中转站每日要输出80吨垃圾,垃圾处理厂日处理垃圾量为70吨,垃圾处理厂日处理垃圾量为110吨.甲、乙两中转站运往、两处理厂的垃圾量和运费如下表.
垃圾量(吨) | 运费(元/吨) | |||
甲中转站 | 乙中转站 | 甲中转站 | 乙中转站 | |
垃圾处理厂 | ______ | 240 | 180 | |
垃圾处理厂 | ______ | 250 | 160 |
(1)设甲中转站运往垃圾处理厂的垃圾量为吨,根据信息填表.
(2)设总运费为元,求总运费(元)关于(吨)的函数关系式,并写出的取值范围.
(3)当甲、乙两中转站各运往、两处理厂多少吨垃圾时,总运费最省?最省的总运费是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com