【题目】如图,每个小正方形的边长为1.
(1)直接写出四边形ABCD的面积和周长;
(2)求证:∠BCD=90°.
【答案】(1)四边形ABCD的面积为14.5,四边形ABCD的周长是3;(2)证明见解析.
【解析】
(1)用四边形ABCD所在长方形的面积减去4个小三角形的面积,列出算式计算即可求得四边形ABCD的面积;利用勾股定理分别求出AB、BC、CD、AD,即可求得四边形ABCD的周长;
(2)求出BD2,利用勾股定理的逆定理即可证明;
(1)四边形ABCD的面积=5×5﹣3×1÷2﹣4×2÷2﹣5×1÷2﹣5×1÷2=14.5;
由勾股定理得AB,BC2,CD,AD,
故四边形ABCD的周长是23;
(2)连接BD.
∵BD2,BC2+CD2=20+5=25,
∴BC2+CD2=BD2,
∴△BCD是直角三角形,且∠BCD=90°.
科目:初中数学 来源: 题型:
【题目】为了调查学生对垃圾分类及投放知识的了解情况,从甲、乙两校各随机抽取40名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了整理、描述和分析。下面给出了部分信息.
a.甲、乙两校40名学生成绩的频数分布统计表如下:
(说明:成绩80分及以上为优秀,7079分为良好,6069分为合格,60分以下为不合格)
b.甲校成绩在70x<80这一组的是:70 70 70 71 72 73 73 73 74 75 76 77 78
c.甲、乙两校成绩的平均分、中位数、众数如下:
根据以上信息,回答下列问题:
(1)写出表中n的值;
(2)在此次测试中,某学生的成绩是74分,在他所属学校排在前20名,由表中数据可知该学生是___校的学生(填“甲”或“乙”),理由是___;
(3)假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店出售一种商品,其原价为元,现有两种调价方案:一种是先提价,在此基础上又降价;另一种是先降价, 在此基础上又提价.
1)用这两种方案调价的结果是否一样?
2)两种调价方案改为:一种是提价;另一种是先提价,在此基础上又提价,这两种调价方案结果是否一样?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC在平面直角坐标系中的位置如图所示.
(1)作出△ABC关于轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;
(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;
(3)观察△A1B1C和△A2B2C2,它们是否关于某直线对称?若是,请用实线条画出对称轴。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将二次函数y=x2-m(其中m>0)的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,形成新的图象记为y1,另有一次函数y=x+b的图象记为y2,则以下说法:
①当m=1,且y1与y2恰好有三个交点时b有唯一值为1;
②当b=2,且y1与y2恰有两个交点时,m>4或0<m<;
③当m=-b时,y1与y2一定有交点;
④当m=b时,y1与y2至少有2个交点,且其中一个为(0,m).
其中正确说法的序号为 ______ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b<2x的解集为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.
(1)求证:DE是⊙O的切线;
(2)若AE=6,∠D=30°,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系的图象如图所示.
(1)求y关于x的函数解析式,并写出x的取值范围;
(2)当生产这种产品每吨的成本为7万元时,求该产品的生产数量.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,抛物线( a≠0)经过原点,顶点为A(h,k)(h≠0).
(1)当h=1,k=2时,求抛物线的解析式;
(2)若抛物线(t≠0)也经过A点,求a与t之间的关系式;
(3)当点A在抛物线上,且-2≤h<1时,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com