精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线经过点A(﹣1,0),B(3,0),C(1,4),与y轴交于点E.
(1)求抛物线的解析式
(2)点F在第三象限的抛物线上,且SBEF=15,求点F的坐标

(3)点P是x轴上一个动点,过P作直线l∥AE交抛物线于点Q,若以A,P,Q,E为顶点的四边形是平行四边形,请直接写出符合条件的点Q的坐标;如果没有,请通过计算说明理由.

【答案】
(1)

解:设抛物线解析式y=ax2+bx+c,把点A(﹣1,0),B(3,0),C(1,4)代入得:

解得:

∴抛物线的解析式是y=﹣x2+2x+3;


(2)

解:设x轴上有一点G,使得SEGB=15,

∵EO=3,

∴BG=10,

∵BO=3,

∴OG=7,

∴点G坐标是(﹣7,0),

过G作GF∥BE,交第三象限抛物线于点F,

设直线BE的解析式为y=kx+b,

由点B(3,0),点E坐标(0,3)可得y=﹣x﹣3,

∴直线GF解析式为y=﹣x﹣7,

联立抛物线和直线GF的解析式得:

解得:x=﹣2,y=﹣5或x=5,y=12,

∵点F在第三象限的抛物线上,

∴点F的坐标是(﹣2,﹣5);


(3)

解:∵直线l∥AC,

∴PQ∥AC且PQ=AC,

∵A(﹣1,0),C(0,3),

∴设点P的坐标为(x,0),

则①若点Q在x轴上方,则点Q的坐标为(x+1,3),

此时,﹣(x+1)2+2(x+1)+3=3,

解得x1=﹣1(舍去),x2=1,

所以,点Q的坐标为(2,3),

②若点Q在x轴下方,则点Q的坐标为(x﹣1,﹣3),

此时,﹣(x﹣1)2+2(x﹣1)+3=﹣3,

整理得,x2﹣4x﹣3=0,

解得x1=2+ ,x2=2﹣

所以,点Q的坐标为(1+ ,﹣3)或(1﹣ ,﹣3),

综上所述,点Q的坐标为(2,3)或(1+ ,﹣3)或(1﹣ ,﹣3).


【解析】(1)设抛物线解析式y=ax2+bx+c,把点A(﹣1,0),B(3,0),C(1,4),分别代入求出a,b,c的值即可求出抛物线的解析式;(2)设x轴上有一点G,使得SEGB=15,易求点G的坐标,过点G作GF∥BE,交第三象限抛物线于点F,求出直线GF解析式,即可求出点F的坐标(3)分点P在点Q的左边和右边两种情况,根据平行四边形的对边平行且相等,从点A、C的坐标关系,用点P的坐标表示出点Q的坐标,然后把点Q的坐标代入抛物线解析式求解即可.
【考点精析】关于本题考查的确定一次函数的表达式和三角形的面积,需要了解确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法;三角形的面积=1/2×底×高才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】威远人民商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.

(1)求甲种牛奶、乙种牛奶的进价分别是多少元?

(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,两种牛奶的总数不超过95件,该商场甲种牛奶的销售价格为49元,乙种牛奶的销售价格为每件55元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价﹣进价)超过371元,请通过计算求出该商场购进甲、乙两种牛奶有哪几种方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知∠MON=30°, A1,A2,A3,…在射线 ON B1,B2,B3,…在射线 OM A1B1A2A2B2A3A3B3A4,…均为等边三角形 OA1=1,A6B6A7的边长为( )

A. 32 B. 16 C. 8 D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在△ABC中,∠B=90°,以AB上的一点O为圆心,以OA为半径的圆交AC于点D,交AB于点E.
(1)求证:ACAD=ABAE;
(2)如果BD是⊙O的切线,D是切点,E是OB的中点,当BC=2时,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解中考体育科目训练情况,某县从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:
(1)本次抽样测试的学生人数是
(2)图1中∠α的度数是 , 并把图2条形统计图补充完整
(3)该县九年级有学生3500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为
(4)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C,点D为AP的中点,连结AC.求证:
(1)∠P=∠BAC
(2)直线CD是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)
(1)求桂味和糯米糍的售价分别是每千克多少元;
(2)如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知y是x的函数,自变量x的取值范围x>0,下表是y与x的几组对应值:

x

1

2

3

5

7

9

y

1.98

3.95

2.63

1.58

1.13

0.88

小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.
下面是小腾的探究过程,请补充完整:

(1)如图,在平面直角坐标系xOy中,描出了以上表格中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
(2)根据画出的函数图象,写出:
①x=4对应的函数值y约为
②该函数的一条性质:

查看答案和解析>>

同步练习册答案