精英家教网 > 初中数学 > 题目详情

如图,抛物线y=ax2+bx+c(a<0)与双曲线相交于点A,B,且抛物线经过坐标原点,点A的坐标为(﹣2,2),点B在第四象限内,过点B作直线BC∥x轴,点C为直线BC与抛物线的另一交点,已知直线BC与x轴之间的距离是点B到y轴的距离的4倍,记抛物线顶点为E.

(1)求双曲线和抛物线的解析式;

(2)计算△ABC与△ABE的面积;

(3)在抛物线上是否存在点D,使△ABD的面积等于△ABE的面积的8倍?若存在,请求出点D的坐标;若不存在,请说明理由.

 

【答案】

(1)(2)15, (3) D的坐标为(3,﹣18)或(﹣4,﹣4)

【解析】解:(1)∵点A(﹣2,2)在双曲线上,

∴k=﹣4。

∴双曲线的解析式为

∵BC与x轴之间的距离是点B到y轴距离的4倍,

∴设B点坐标为(m,﹣4m)(m>0)代入双曲线解析式得m=1。

∴抛物线y=ax2+bx+c(a<0)过点A(﹣2,2)、B(1,﹣4)、O(0,0)。

,解得:

∴抛物线的解析式为

(2)∵抛物线的解析式为

∴顶点E(),对称轴为x=

∵B(1,﹣4),∴﹣x2﹣3x=﹣4,解得:x1=1,x2=﹣4。

∴C(﹣4,﹣4)。

∴SABC=×5×6=15,

由A、B两点坐标为(﹣2,2),(1,﹣4)可求得直线AB的解析式为:y=﹣2x﹣2。

设抛物线的对称轴与AB交于点F,则F点的坐标为(,1)。

∴EF=。∴SABE=SAEF+SBEF=××3=

(3)SABE=,∴8SABE=15。

∴当点D与点C重合时,显然满足条件,

当点D与点C不重合时,过点C作AB的平行线CD,

其直线解析式为y=﹣2x﹣12。

令﹣2x﹣12=﹣x2﹣3x,解得x1=3,x2=﹣4(舍去)。

当x=3时,y=﹣18,故存在另一点D(3,﹣18)满足条件。

综上所述,可得点D的坐标为(3,﹣18)或(﹣4,﹣4)。

(1)将点A的坐标代入双曲线方程即可得出k的值,设B点坐标为(m,﹣4m)(m>0),根据双曲线方程可得出m的值,然后分别得出了A、B、O的坐标,利用待定系数法求解二次函数解析式即可。

(2)根据点B的坐标,结合抛物线方程可求出点C的坐标,从而可得出△ABC的面积。先求出AB的解析式,然后求出点F的坐标,及EF的长,从而根据SABE=SAEF+SBEF可得△ABE的面积。

(3)先确定符合题意的△ABD的面积,从而可得出当点D与点C重合时,满足条件;当点D与点C不重合时,过点C作AB的平行线CD,则可求出其解析式,求出其与抛物线的交点坐标即可得出点D的坐标。

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,直线y=ax+b与抛物线y=ax2+bx+c的图象在同一坐标系中可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y1=-ax2-ax+1经过点P(-
1
2
9
8
),且与抛物线y2=ax2-ax-1相交于A,B两点.
(1)求a值;
(2)设y1=-ax2-ax+1与x轴分别交于M,N两点(点M在点N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(点E在点F的左边),观察M,N,E,F四点的坐标,写出一条正确的结论,并通过计算说明;
(3)设A,B两点的横坐标分别记为xA,xB,若在x轴上有一动点Q(x,0),且xA≤x≤xB,过Q作一条垂直于x轴的直线,与两条抛物线分别交于C,D精英家教网两点,试问当x为何值时,线段CD有最大值,其最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=-ax2+ax+6a交x轴负半轴于点A,交x轴正半轴于点B,交y轴正半轴于点D,精英家教网O为坐标原点,抛物线上一点C的横坐标为1.
(1)求A,B两点的坐标;
(2)求证:四边形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在精英家教网此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线y=ax2+ax+c与y轴交于点C(0,-2),精英家教网与x轴交于点A、B,点A的坐标为(-2,0).
(1)求该抛物线的解析式;
(2)M是线段OB上一动点,N是线段OC上一动点,且ON=2OM,分别连接MC、MN.当△MNC的面积最大时,求点M、N的坐标;
(3)若平行于x轴的动直线与该抛物线交于点P,与线段AC交于点F,点D的坐标为(-1,0).问:是否存在直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案