分析 根据∠BAC=40°的条件,求出∠ACB+∠ABC的度数,再根据∠ACB=∠ABC,∠ACP=∠CBP,求出∠PBA=∠PCB,于是可求出∠ACP+∠ABP=∠PCB+∠PBC,然后根据三角形的内角和定理求出∠BPC的度数.
解答 解:∵∠BAC=40°,
∴∠ACB+∠ABC=180°-40°=140°,
又∵∠ACB=∠ABC,∠ACP=∠CBP,
∴∠PBA=∠PCB,
∴∠ACP+∠ABP=∠PCB+∠PBC=140°×$\frac{1}{2}$=70°,
∴∠BPC=180°-70°=110°.
故答案为110°.
点评 此题考查了三角形的内角和定理,熟记三角形的内角和定理是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\sqrt{16}$=±4 | B. | $\root{3}{64}$=4 | C. | $\sqrt{-9}$=3 | D. | $\sqrt{2\frac{1}{4}}$=$\frac{3}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com