【题目】如图,在△ABC中,∠C=90°,AC=BC,∠BAC的平分线AE交BC于点D,且AE⊥BE.
(1)求∠DBE的大小;
(2)求证:AD=2BE.
【答案】
(1)解:∵∠C=90°,AC=BC,
∴∠BAC=45°,
∵AE是∠BAC的平分线,
∴∠CAD= ∠BAC=22.5°,
∵AE⊥BE,
∴∠BED=90°,
∴∠ACD=∠BED=90°,∵∠ADC=∠BDE,
∴∠DBE=∠CAD=22.5°
(2)证明:延长AC、BE交于点G.
∵AE⊥BG,
∴∠AEB=∠AEG=90°,
在△AEB和△AEG中,
,
∴△AEB≌△AEG,
∴BE=EG,
在△ACD和△BCG中,
,
∴△ACD≌△BCG,
∴AD=BG=2BE,
∴AD=2BE.
【解析】(1)求出∠CAD,再证明∠DBE=∠CAD即可.(2)先证明△AEB≌△AEG,推出BE=EG,再证明△ACD≌△BCG,推出AD=BG,由此即可证明.
【考点精析】解答此题的关键在于理解等腰直角三角形的相关知识,掌握等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°.
科目:初中数学 来源: 题型:
【题目】宁都县某脐橙园2016年产量为1000吨,2018年产量为1440吨,求该脐橙园脐橙产量的年平均增长率,设该脐橙园脐橙产量的年平均增长量为x,则根据题意可列方程为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】In right Fig.,if the length of the segment AB is 1,M is the midpoint of the segment AB,and point C divides the segment MB into two parts such that MC:CB=1:2,then the length of AC is 。
(英汉词典:length 长度;segment 线段;midpoint 中点;divides…into 分为,分成)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点A(0,2),△AOB为等边三角形,P是x轴上一个动点(不与原O重合),以线段AP为一边在其右侧作等边三角形△APQ.
(1)求点B的坐标;
(2)在点P的运动过程中,∠ABQ的大小是否发生改变?如不改变,求出其大小;如改变,请说明理由.
(3)连接OQ,当OQ∥AB时,求P点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】满足下列条件的三角形中,不是直角三角形的是( )
A.三内角之比为1:2:3
B.三边长分别为5,12,14
C.三边长之比为3:4:5
D.三边长分别为1, ,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形网格中(网格中的每个小正方形边长是1),△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:
(1)作出△ABC绕点A逆时针旋转90°的△A1B1C1;作出△ABC关于原点O成中心对称的△A2B2C2;
(2)点B1的坐标为 , 点C2的坐标为
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com