精英家教网 > 初中数学 > 题目详情
6.设a、b、c均为实数,且满足a2+b2+c2=6a+10b+26c-203,化简2$\sqrt{a+\sqrt{b-\sqrt{c+4\sqrt{a}}}}$.

分析 根据已知条件写成三个完全平方式的和,根据非负数的性质求得a、b、c的值,再进一步代入化简求值即可.

解答 解:∵a2+b2+c2=6a+10b+26c-203,
∴a2+b2+c2-6a-10b-26c+203=0,
∴(a-3)2+(b-5)2+(c-13)2=0,
∴a-3=0,b-5=0,c-13=0,
∴a=3,b=5,c=13,
∴2$\sqrt{a+\sqrt{b-\sqrt{c+4\sqrt{a}}}}$
=2$\sqrt{3+\sqrt{5-\sqrt{(\sqrt{12}+1)^{2}}}}$
=2$\sqrt{3+\sqrt{4-2\sqrt{3}}}$
=2$\sqrt{3+\sqrt{(\sqrt{3}-1)^{2}}}$
=2$\sqrt{2+\sqrt{3}}$
=$\sqrt{8+4\sqrt{3}}$
=$\sqrt{(\sqrt{6}+\sqrt{2})^{2}}$
=$\sqrt{6}$+$\sqrt{2}$.

点评 此题考查配方法的运用,非负数的性质,二次根式的化简,掌握完全平方公式是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.在数轴上画出下列各点,它们分别表示:
+3,0,-3$\frac{1}{4}$,1$\frac{1}{2}$,-3,-1.25.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.下列分式中,与分式$\frac{3}{x}$相等的是(  )
A.$\frac{9}{{x}^{2}}$B.$\frac{3x}{{x}^{2}}$C.$\frac{3x}{3{x}^{2}}$D.$\frac{3x}{3x}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.能被3和4整除的整数可表示为12n.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知(2m-8)x2+x3n-2-6=0是关于x的一元二次方程,求m,n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.用黑白两种正六边形瓷砖按如图规律拼成若干图案.

(1)第n个图案中有白色瓷砖多少块?
(2)第n-1个图案中黑色瓷砖和白色瓷砖共有多少块?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知x,y是实数,且(x-y+1)2与$\sqrt{5x-3y-3}$互为相反数,求$\sqrt{{x}^{2}+{y}^{2}}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.当x=1时,分式$\frac{{x}^{2}-1}{{x}^{2}-2x+1}$无意义.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,直角三角形ABC中,AB=4,AC=5,BC=3,D、E分别为AB和BC边上的动点,是否存在某一特殊位置使得线段DE既平分△ABC的面积又平分△ABC的周长.

查看答案和解析>>

同步练习册答案