精英家教网 > 初中数学 > 题目详情
(2012•威海)探索发现
已知:在梯形ABCD中,CD∥AB,AD,BC的延长线相交于点E,AC,BD相交于点O,连接EO并延长交AB于点M,交CD于点N.
(1)如图①,如果AD=BC,求证:直线EM是线段AB的垂直平分线.
(2)如图②,如果AD≠BC,那么线段AM与BM是否相等?请说明理由.
学以致用
仅用直尺(没有刻度),试作出图③中的矩形ABCD的一条对称轴.(写出作图步骤,保留作图痕迹)
分析:(1)AD=BC,CD∥AB,则四边形ABCD是等腰梯形,根据等腰梯形的性质可以得到∠DAB=∠CBA,则AE=BE,即E在AB的垂直平分线上,然后根据OA=OB即可证明O在AB的垂直平分线上,从而证得EM是AB的垂直平分线;
(2)易证△DEN∽△AEM,△OND∽△OMB,则依据相似三角形的对应边的比相等,可以证得:
DN
BM
=
DN
AM
,从而证得BM=AM;
(3)根据(2)可以得到:连接AC,BD,两线交于点O1,矩形ABCD外任取一点E,连接EA,EB,分别交DC于点G,H,即可作出AB的中点M,则直线MO1即为所求.
解答:(1)证明:∵AD=BC,CD∥AB.
∴四边形ABCD是等腰梯形,
∴AC=BD,∠DAB=∠CBA,
∴AE=BE
∴点E在线段AB的垂直平分线上,
在△ABD与△BAC中,AB=BA,AD=BC,BD=AC,
∴△ABD≌△BAC,
∴∠1=∠2
∴OA=OB,
∴点O在线段AB的垂直平分线上,
则直线EM是线段AB的垂直平分线;

(2)解:相等.理由:
∵CD∥AB,∴∠3=∠EAB
∵∠4=∠4,
∴△DEN∽△AEM
DN
AM
=
DE
AE
,同理
DE
AE
=
DC
AB

DN
AM
=
DC
AB

∵CD∥AB,
∴∠5=∠6
又∵∠7=∠8,
∴△OND∽△OMB
DN
BM
=
OD
OB
,同理
OD
OB
=
DC
AB


DN
BM
=
DC
AB

DN
BM
=
DN
AM

∴AM=BM;

(3)解:作法:如图③①连接AC,BD,两线交于点O1
②在矩形ABCD外任取一点E,连接EA,EB,分别交DC于点G,H
③连接BG,AH,两线交于点O2
④作直线EO2,交AB于点M.
⑤作直线MO1
∴直线MO1就是矩形ABCD的一条对称轴.
点评:本题考查了相似三角形的判定与性质,正确根据相似三角形的对应边的比相等,通过等量代换得到
DN
BM
=
DN
AM
是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•威海)某外贸公司要出口一批食品罐头,标准质量为每听454克,现抽去10听样品进行检测,它们的质量与标准质量的差值(单位:克)如下:-10,+5,0,+5,0,0,-5,0,+5,+10.则这10听罐头质量的平均数及众数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•威海)如图,在?ABCD中,AE,CF分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AECF为菱形的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•威海)小明计划用360元从大型系列科普丛书《什么是什么》(每本价格相同)中选购部分图书.“六一”期间,书店推出优惠政策:该系列丛书8折销售.这样,小明比原计划多买了6本.求每本书的原价和小明实际购买图书的数量.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•威海)函数y=
x
x-3
的自变量x的取值范围是(  )

查看答案和解析>>

同步练习册答案