精英家教网 > 初中数学 > 题目详情

【题目】如图,在□ABCD中,点E、F分别是AD、BC的中点,分别连接BE、DF、BD.

(1)求证:△AEB≌△CFD;

(2)若四边形EBFD是菱形,求∠ABD的度数.

【答案】(1)、证明过程见解析;(2)90°

【解析】试题分析:(1)、根据平行四边形的性质和已知条件证明即可;(2)、由菱形的性质可得:BE=DE,因为∠EBD+∠EDB+∠A+∠ABE=180°,所以∠ABD=∠ABE+∠EBD=×180°=90°,问题得解.

试题解析:(1)四边形ABCD是平行四边形, ∴∠A=∠CAD=BCAB=CD

EF分别是ADBC的中点, ∴AE=ADFC=BC∴AE=CF

∴△AEB≌△CFDSAS).

(2)四边形EBFD是菱形, ∴BE=DE∴∠EBD=∠EDB∵AE=DE∴BE=AE

∴∠A=∠ABE∵∠EBD+∠EDB+∠A+∠ABE=180°∴∠ABD=∠ABE+∠EBD=×180°=90°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】x1x2是方程x2+5x30的两个根,则x+x2x1x2的值是(  )

A. 8B. 8C. 2D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请写出一个含有两个字母、系数为﹣2的二次单项式

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列单项式:x,﹣2x2 , 3x3 , ﹣4x4 , 5x5 , …按此规律,可以得到第n个单项式表示为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正方形ABCD的边长为5,E在BC边上运动,DE的中点G,EG绕E顺时针旋转90°得EF,问CE为多少时A、C、F在一条直线上 (  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算a2+3a2的结果是(
A.3a2
B.4a2
C.3a4
D.4a4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD,仅从下列条件中任取两个加以组合,使得ABCD是平行四边形,一共有多少种不同的组合? ABCD BCAD AB=CD BC=AD( )

A. 2 B. 3 C. 4 D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:﹣12+(﹣2)×31÷(﹣0.2)﹣|4|

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB切⊙O于点BOA=5,tanA=,弦BCOA

(1)求AB的长

(2)求四边形AOCB的面积.

查看答案和解析>>

同步练习册答案