【题目】如表是一个4×4(4行4列共16个“数”组成)的奇妙方阵,从这个方阵中选四个“数”,而且这四个“数”中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个“数”相加,其和是定值,则方阵中第三行三列的“数”是( )
30 |
| 2sin60° | 22 |
﹣3 | ﹣2 | ﹣sin45° | 0 |
|﹣5| | 6 | 23 | |
()﹣1 | 4 |
| ()﹣1 |
A. 5 B. 6 C. 7 D. 8
科目:初中数学 来源: 题型:
【题目】某厂将四种型号的空调销售额的情况绘制成了图①和图②两幅尚不完整的统计图.
(1)请补全图②的条形统计图;
(2)为了应对激烈的市场竞争,该厂决定降价促销,四种型号的空调分别降价,因此该厂宣称其产品平均降价,你认为该厂的说法正确吗?请通过计算说明理由;
(3)为进一步促销,该厂决定从这四种型号的空调中任意选取两种型号的空调降价销售,请用树状图或列表法求出降价空调中含D型号空调的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△ABC,∠ABC=90°,顶点A在第一象限,B、C在x轴的正半轴上(C在B的右侧),BC=3,AB=4,若双曲线交边AB于点E,交边AC于中点D.
(1)若OB=2,求k;
(2)若AE=, 求直线AC的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图①是甘肃省博物馆的镇馆之宝——铜奔马,又称“马踏飞燕”,于1969年10月出土于武威市的雷台汉墓,1983年10月被国家旅游局确定为中国旅游标志,在很多旅游城市的广场上都有“马踏飞燕”雕塑,某学习小组把测量本城市广场的“马踏飞燕”雕塑(图②)最高点离地面的高度作为一次课题活动,同学们制定了测量方案,并完成了实地测量,测得结果如下表:
课题 | 测量“马踏飞燕”雕塑最高点离地面的高度 | |||
测量示意图 | 如图,雕塑的最高点到地面的高度为,在测点用仪器测得点的仰角为,前进一段距离到达测点,再用该仪器测得点的仰角为,且点,,,,,均在同一竖直平面内,点,,在同一条直线上. | |||
测量数据 | 的度数 | 的度数 | 的长度 | 仪器()的高度 |
5米 | 米 |
请你根据上表中的测量数据,帮助该小组求出“马踏飞燕”雕塑最高点离地面的高度(结果保留一位小数).(参考数据:,,,,,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点的坐标,将线段绕点按顺时针方向旋转45°,再将其长度伸长为的2倍,得到线段;又将线段绕点按顺时针方向旋转45°,长度伸长为的2倍,得到线段;如此下去,得到线段、,……,(为正整数),则点的坐标是_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】房山某中学改革学生的学习模式,变“老师要学生学习”为“学生自主学习”,培养了学生自主学习的能力.小华与小明同学就“最喜欢哪种学习方式”随机调查了他们周围的一些同学,根据收集到的数据绘制了以下的两个统计图.请根据下面两个不完整的统计图回答以下问题:
(1)这次抽样调查中,共调查了 名学生;
(2)补全两幅统计图;
(3)根据抽样调查的结果,估算该校1000名学生中大约有多少人选择“小组合作学习”?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,过点B的直线与抛物线的另一个交点为D,与抛物线的对称轴交于点E,与y轴交于点F,且,△OBE的面积为.
(1)求抛物线的解析式;
(2)设P为已知抛物线上的任意一点,当△ACP的面积等于△ACB的面积时,求点P的坐标;
(3)点Q(0,m)是y轴上的动点,连接AQ、BQ,当∠AQB为钝角时,则m的取值范围是 .(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2﹣ax﹣2a(a为常数且不等于0)与x轴的交点为A,B两点,且A点在B的右侧.
(1)当抛物线经过点(3,8),求a的值;
(2)求A、B两点的坐标;
(3)若抛物线的顶点为M,且点M到x轴的距离等于AB的3倍,求抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从2017年1月1日起,我国驾驶证考试正式实施新的驾考培训模式,新规定C2驾驶证的培训学时为40学时,驾校的学费标准分不同时段,普通时段a元/学时,高峰时段和节假日时段都为b元/学时.
(1)小明和小华都在此驾校参加C2驾驶证的培训,下表是小明和小华的培训结算表(培训学时均为40),请你根据提供的信息,计算出a,b的值.
学员 | 培训时段 | 培训学时 | 培训总费用 |
小明 | 普通时段 | 20 | 6000元 |
高峰时段 | 5 | ||
节假日时段 | 15 | ||
小华 | 普通时段 | 30 | 5400元 |
高峰时段 | 2 | ||
节假日时段 | 8 |
(2)小陈报名参加了C2驾驶证的培训,并且计划学够全部基本学时,但为了不耽误工作,普通时段的培训学时不会超过其他两个时段总学时的,若小陈普通时段培训了x学时,培训总费用为y元
①求y与x之间的函数关系式,并确定自变量x的取值范围;
②小陈如何选择培训时段,才能使得本次培训的总费用最低?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com