【题目】如图,四边形ABCD是矩形纸片,AB=2.对折矩形纸片ABCD,使AD与BC重合,折痕为EF;展平后再过点B折叠矩形纸片,使点A落在EF上的点N,折痕BM与EF相交于点Q;再次展平,连接BN,MN,延长MN交BC于点G.有如下结论:
①∠ABN=60°;②AM=1;③QN=;④△BMG是等边三角形;⑤P为线段BM上一动点,H是BN的中点,则PN+PH的最小值是.其中正确结论的序号是 .
【答案】①④⑤
【解析】解:如图1,连接AN,
∵EF垂直平分AB,
∴AN=BN,
根据折叠的性质,可得
AB=BN,
∴AN=AB=BN.
∴△ABN为等边三角形.
∴∠ABN=60°,∠PBN=60°÷2=30°,
即结论①正确;
∵∠ABN=60°,∠ABM=∠NBM,
∴∠ABM=∠NBM=60°÷2=30°,
∴AM=,
即结论②不正确.
∵EF∥BC,QN是△MBG的中位线,
∴QN=BG;
∵BG=BM=,
∴QN=,
即结论③不正确.
∵∠ABM=∠MBN=30°,∠BNM=∠BAM=90°,
∴∠BMG=∠BNM﹣∠MBN=90°﹣30°=60°,
∴∠MBG=∠ABG﹣∠ABM=90°﹣30°=60°,
∴∠BGM=180°﹣60°﹣60°=60°,
∴∠MBG=∠BMG=∠BGM=60°,
∴△BMG为等边三角形,
即结论④正确.
∵△BMG是等边三角形,点N是MG的中点,
∴BN⊥MG,∴BN=BGsin60°=,
根据条件易知E点和H点关于BM对称,∴PH=PE,
∴P与Q重合时,PN+PH的值最小,此时PN+PH=PN+PE=EN,
∵EN==,
∴PN+PH=,
∴PN+PH的最小值是,
即结论⑤正确.
故答案为:①④⑤.
①首先根据EF垂直平分AB,可得AN=BN;然后根据折叠的性质,可得AB=BN,据此判断出△ABN为等边三角形,即可判断出∠ABN=60°.
②首先根据∠ABN=60°,∠ABM=∠NBM,求出∠ABM=∠NBM=30°;然后在Rt△ABM中,根据AB=2,求出AM的大小即可.
③首先根据EF∥BC,QN是△MBG的中位线,可得QN=BG;然后根据BG=BM=,求出QN的长度即可.
④根据∠ABM=∠MBN=30°,∠BNM=∠BAM=90°,推得∠MBG=∠BMG=∠BGM=60°,即可推得△BMG是等边三角形.
⑤首先根据△BMG是等边三角形,点N是MG的中点,判断出BN⊥MG,即可求出BN的大小;然后根据E点和H点关于BM称可得PH=PE,因此P与Q重合时,PN+PH=PN+PE=EN,据此求出PN+PH的最小值是多少即可.
科目:初中数学 来源: 题型:
【题目】“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为S=a+﹣1,孔明只记得公式中的S表示多边形的面积,a和b中有一个表示多边形边上(含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a还是b表示多边形内部的整点个数,请你选择一些特殊的多边形(如图1)进行验证,得到公式中表示多边形内部的整点个数的字母是 ,并运用这个公式求得图2中多边形的面积是 .
.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△A1B1A2 , △A2B2A3 , △A3B3A4 , …,△AnBnAn+1都是等腰直角三角形,其中点A1、A2、…、An在x轴上,点B1、B2、…、Bn在直线y=x上,已知OA1=1,则OA2015的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是( )
A.圆形铁片的半径是4cm
B.四边形AOBC为正方形
C.弧AB的长度为4πcm
D.扇形OAB的面积是4πcm2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC绕点C逆时针旋转90°得△A′D′C′,连接ED′,抛物线y=ax2+bx+n(a≠0)过E,A′两点.
(1)填空:∠AOB= °,用m表示点A′的坐标:A′( , );
(2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且=时,△D′OE与△ABC是否相似?说明理由;
(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MN⊥y轴,垂足为N:
①求a,b,m满足的关系式;
②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,P是BA延长线上一点,PC切⊙O于点C,CG是⊙O的弦,CG⊥AB,垂足为D.
(1)求证:∠PCA=∠ABC;
(2)过点A作AE∥PC,交⊙O于点E,交CD于点F,连接BE.若sin∠P=,CF=5,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数的图象与一次函数y=ax+b的图象相交于点A(1,4)和点B(n,﹣2).
(1)求反比例函数和一次函数的解析式;
(2)当一次函数的值小于反比例函数的值时,直接写出x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,C城市在A城市正东方向,现计划在A、C两城市间修建一条高速公路(即线段AC),经测量,森林保护区的中心P在A城市的北偏东60°方向上,在线段AC上距A城市120km的B处测得P在北偏东30°方向上,已知森林保护区是以点P为圆心,100km为半径的圆形区域,请问计划修建的这条高速公路是否穿越保护区,为什么?(参考数据: ≈1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),在矩形ABCD中,AB=4,BC=3,点E是射线CD上的一个动点,把△BCE沿BE折叠,点C的对应点为F.
(1)若点F刚好落在线段AD的垂直平分线上时,求线段CE的长;
(2)若点F刚好落在线段AB的垂直平分线上时,求线段CE的长;
(3)当射线AF交线段CD于点G时,请直接写出CG的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com